5190
B. V. Meprathu et al. / Tetrahedron Letters 46 (2005) 5187–5190
9. Chung, W.-J.; Kim, D.-K.; Lee, Y.-S. Tetrahedron Lett.
2003, 44, 9251–9254.
associated with this article can be found, in the online
10. (a) Hirt, U. H.; Spingler, B.; Wirth, T. J. Org. Chem. 1998,
63, 7674–7679; (b) Wirth, T.; Hirt, U. H. Tetrahedron:
Asymmetry 1997, 8, 23–26; (c) Hirt, U. H.; Schuster, M. F.
H.; French, A. N.; Wiest, O. G.; Wirth, T. Eur. J. Org.
Chem. 2001, 8, 1569–1579.
References and notes
1. For some reviews see: (a) Zhdankin, V. V.; Stang, P. J.
Chem. Rev. 2002, 102, 2523–2584; (b) Koser, G. F.
Aldrichim. Acta 2001, 34, 89–102; (c) Stang, P. J.;
Zhdankin, V. V. Chem. Rev. 1996, 96, 1123–1178; (d)
Koser, G. F. In The Chemistry of Halides, Psuedohalides
and Azides, Supplement D2; Patai, S., Rappoport, Z., Eds.;
John Wiley & Sons: New York, 1995, pp 1173–1274; (e)
Varvoglis, A. The Chemistry of Polycoordinated Iodine;
VCH: New York, 1992; (f) Hypervalent Iodine Chemistry:
Modern Developments in Organic Synthesis; Wirth, T., Ed.;
Topics in Current Chemistry; Springer: Berlin, 2003; Vol.
224.
2. For some examples of nitrene transfer see: (a) Dauban, P.;
Dodd, R. H. Synlett 2003, 1571; (b) Osborn, H. M.;
Sweeney, J. Tetrahedron: Asymmetry 1997, 8, 1693–1715;
(c) Johannsen, M.; Jørgensen, K. A. Chem. Rev. 1998, 98,
1689–1708; (d) Lautens, M.; Klute, W.; Tam, W. Chem.
Rev. 1996, 96, 49–92; (e) Li, Z.; Quan, R. W.; Jacobsen, E.
N. J. Am. Chem. Soc. 1995, 117, 5889–5890; (f) Li, Z.;
Conser, K. R.; Jacobsen, E. N. J. Am. Chem. Soc. 1993,
115, 5326–5327; (g) Evans, D. A.; Bilodeau, M. T.; Faul,
M. M. J. Am. Chem. Soc. 1994, 116, 2742–2753; (h) Evans,
D. A.; Faul, M. M.; Bilodeau, M. T. J. Org. Chem. 1991,
56, 6744–6746.
11. Zhdankin, V. V.; Koposov, A. Y.; Smart, J. T. J. Am.
Chem. Soc. 2001, 123, 4095–4096.
12. (a) Ochiai, M.; Suefuji, T.; Miyamoto, K.; Tada, N.;
Goto, S.; Shiro, M.; Sakamoto, S.; Yamaguchi, K. J. Am.
Chem. Soc. 2003, 125, 769–773; (b) Ochiai, M.; Miyamoto,
K.; Shiro, M.; Ozawa, T.; Yamaguchi, K. J. Am. Chem.
Soc. 2003, 125, 13006–13007; (c) Ochiai, M.; Suefuji, T.;
Miyamoto, K.; Shiro, M. J. Chem. Soc., Chem. Commun.
2003, 1438–1439.
13. Desponds, O.; Schlosser, M. J. Organomet. Chem. 1996,
507, 257–261.
14. Tunney, S. E.; Stille, J. K. J. Org. Chem. 1987, 52, 748–
752.
15. Saltzman, H.; Sharefkin, J. G. Org. Synth. 1963, 43, 60–
61.
16. Lucas, H. J.; Kennedy, E. R.; Formo, M. W. Org. Synth.
1955, Coll. Vol. 3, 483–485.
17. Compound 9: A solution of 8 (0.505 g, 1.30 mmol) and
tetra-n-butylammonium bromide (25 mg) in CH2Cl2
(20 mL) was stirred vigorously with 50 mL of 5.25%
aqueous sodium hypochlorite (Cloroxꢂ) for a period of
1 h and then allowed to stand overnight. Filtration of the
resulting crystals in the organic layer gave 9 (0.403 g,
1
71%); mp 205 ꢁC (exp. dec.); H NMR (DMSO-d6) 8.48
3. For some examples of oxo-transfer see: (a) Palucki, M.;
Pospisil, P. J.; Zhang, W.; Jacobsen, E. N. J. Am. Chem.
Soc. 1994, 116, 9333–9334; (b) Holm, R. H.; Donahue, J.
P. Polyhedron 1993, 12, 571–589; (c) Collman, J. P.;
Zhang, X.; Lee, V. J.; Uffelman, E. S.; Brauman, J. I.
Science 1993, 261, 1404–1411; (d) Ostovic, D.; Bruice, T.
C. Acc. Chem. Res. 1992, 25, 314–320; (e) Zhang, W.;
Loebach, J. L.; Wilson, S. R.; Jacobsen, E. N. J. Am.
Chem. Soc. 1990, 112, 2801–2803.
(dd, 1H), 7.96 (t, 1H), 7.54–7.82 (m, 14H); 13C NMR
(DMSO-d6) 138.9, 138.2, 137.3 (d, JCP = 10.3 Hz), 137.2
(d, JCP = 42.8 Hz), 136.4, 135.0, 134.2, 133.3 (d, JCP
93.2 Hz), 133.2 (d, JCP = 7.2 Hz), 127.7 (d, JCP = 4.6 Hz);
=
31P d 39.5.
18. Boucher, M. A.; Macikenas, D.; Ren, T.; Protasiewicz, J.
D. J. Am. Chem. Soc. 1997, 119, 9366–9376.
19. Nappa, M. J.; Tolman, C. A. Inorg. Chem. 1985, 24, 4711–
4719.
4. Batchelor, R. J.; Birchall, T.; Sawyer, J. F. Inorg. Chem.
1986, 25, 1415–1420.
20. Bressan, M.; Morvillo, A. Inorg. Chem. 1989, 28, 950–
953.
5. (a) Meprathu, B. V.; Protasiewicz, J. D. ARKIVOC 2003,
83–90; (b) Macikenas, D.; Skrzypczak-Jankun, E.; Prot-
asiewicz, J. D. Angew. Chem., Int. Ed. 2000, 39, 2007–
2010; (c) Macikenas, D.; Skrzypczak-Jankun, E.; Prot-
asiewicz, J. D. J. Am. Chem. Soc. 1999, 121, 7164–7165.
6. (a) Zhdankin, V. V.; Koposov, A. Y.; Netzel, B. C.;
Yashin, N. V.; Rempel, B. P.; Ferguson, M. J.; Tykwinski,
R. R. Angew. Chem., Int. Ed. 2003, 42, 2194–2196; (b)
Zhdankin, V. V. Curr. Org. Synth. 2005, 2, 121–145.
7. (a) Zhdankin, V. V.; Litvinov, D. N.; Koposov, A. Y.;
Luu, T.; Ferguson, M. J.; McDonald, R.; Tykwinski, R.
R. J. Chem. Soc., Chem. Commun. 2004, 106–107; (b)
Koposov, A. Y.; Zhdankin, V. V. Synthesis 2005, 22.
8. (a) Koposov, A. Y.; Litvinov, D. N.; Zhdankin, V. V.
Tetrahedron Lett. 2004, 45, 2719–2721; (b) Zhdankin, V.;
Goncharenko, R. N.; Litvinov, D. N.; Koposov, A. Y.
ARKIVOC 2005, 8–18.
21. Bayraktaroglu, T. O.; Gooding, M. A.; Khatib, S. F.; Lee,
H.; Kourouma, M.; Landolt, R. G. J. Org. Chem. 1993,
58, 1264–1265.
22. Compound 10: A solution of peracetic acid (2 mL, 32% in
dilute acetic acid) was added to 8 (0.602 g, 1.48 mmol) and
stirred overnight at room temperature (a solution was
obtained within 1 h). The solution was concentrated in
vacuo to a moist, white solid. After trituration with water
followed by ether, the solid was dissolved in chloroform
(20 mL) and further washed with water (3 · 10 mL).
Concentration of the organic phase afforded 10; mp
105 ꢁC; 1H NMR (CDCl3) d 8.78 (d, J = 7.8 Hz, 1H), 7.94
(m, 1H), 7.4–7.9 (m, 12H); 13C NMR (DMSO-d6) d 154.5,
132.9, 132.6, 132.1, 131.8, 131.1, 131.0, 129.7, 129.0, 128.8,
122.5; 31P NMR (CDCl3) d 38.5; HRMS 403.9808, calcd
403.9827; Anal. Calcd for C18H14IO2PÆ0.86CHCl3: C,
43.32; H, 3.64. Found: C, 43.36; H, 3.31.