J. W. J. Bosco et al. / Tetrahedron Letters 47 (2006) 4065–4068
4067
Supplementary data
+
I
I
+
+
O
+H
H
Supplementary data associated with this article can
O
OH
O
ROH
O
O
R
H
O
References and notes
Scheme 2.
1. (a) Greene, T. W.; Wuts, P. G. In Protective Groups in
Organic Synthesis, 3rd ed.; John Wiley & Sons: New York,
1999; p 149, 373; (b) Otera, J. Chem. Rev. 1993, 93, 1449;
(c) Franklin, A. S. J. Chem. Soc., Perkin Trans. 1 1998,
2451; (d) Franklin, A. S. J. Chem. Soc., Perkin Trans. 1
1999, 3537.
alcohols. Sterically hindered secondary alcohols (entries
11, 12 and 13) can also be acetylated in good yields.
Entries 10 and 13 testify the mildness of this method
towards acid sensitive groups. Phenols gave only trace
amounts of acetylated products and therefore alcohols
can be chemoselectively acetylated (entries 14 and 15).
Tertiary alcohols were found to react slowly under these
reaction conditions. Tertiary butyl alcohol gave only an
18% yield after a prolonged reaction time (24 h), while
the tertiary benzylic alcohol (entry 17) remained unre-
acted. The reaction was completed quickly when carried
out neat and also worked well in solvents such as tolu-
ene and THF, but took longer. Thus, the reaction of
menthol was complete within 4.5 h with 94% yield when
carried out in the presence of 4 equiv of vinyl acetate.
On the other hand, the same reaction took 13 h to com-
plete when carried out in THF giving a 92% yield. Inter-
estingly, no iodo product was observed in the case of
olefinic substrates (entries 4 and 9). The advantage of
this reaction is that like acetic anhydride or acetyl chlo-
ride, it does not generate any acidic waste; as a result,
the reaction medium is neutral. The only by-product,
acetaldehyde can be removed by evaporation.
2. Horton, D. Organic Syntheses; Wiley: New York, 1973;
Collect Vol. V, p 1.
3. (a) Zhdanov, R. I.; Zhenodarova, S. M. Synthesis 1975,
222; (b) Stork, G.; Takahashi, T.; Kawamoto, I.; Suzuki,
T. J. Am. Chem. Soc. 1978, 100, 8272; (c) Dauban, W. G.;
Bune, R. A.; Gerdes, J. M.; Henger, K. E.; Cunningham,
A. F., Jr.; Ottoboni, T. B. Tetrahedron Lett. 1983, 24,
5709.
4. (a) Vedejs, E.; Diver, S. T. J. Am. Chem. Soc. 1993, 115,
3358; (b) Vedejs, E.; Bennett, N. S.; Conn, L. M.; Diver,
S. T.; Gingaves, M.; Lin, S.; Oliver, P. A.; Peterson, M. J.
J. Org. Chem. 1993, 58, 7286.
5. (a) Hofle, G.; Steglich, V.; Vogruggen, H. Angew. Chem.,
Int. Ed. Engl. 1978, 17, 569; (b) Scriven, E. F. V. Chem.
Soc. Rev. 1983, 12, 366; (c) Connors, K. A.; Ebaka, C. J.
J. Pharm. Sci. 1983, 72, 366.
6. Ishihara, K.; Kuboto, M.; Kurihara, H.; Yamamoto, H.
J. Am. Chem. Soc. 1995, 117, 4413.
7. Procopiou, P. A.; Baugh, S. P. D.; Flask, S. S.; Ingliss, G.
G. A. J. Org. Chem. 1999, 63, 2342.
8. Sarvanan, P.; Singh, V. K. Tetrahedron Lett. 1999, 40, 2611.
9. Chandrasekhar, S.; Ramchander, T.; Takhi, M. Tetra-
hedron Lett. 1998, 39, 3263.
10. Chaun, K. K.; Frost, C. G.; Love, I.; Waite, D. Synlett
1999, 1743.
11. Iqbal, J.; Srivastava, R. R. J. Org. Chem. 1992, 57, 2001,
and references cited therein.
The reaction is a transesterification reaction as is evident
from the formation of acetaldehyde, which was con-
firmed by H NMR of the crude reaction mixture. The
following mechanism can be proposed for the reaction.
Both the carbonyl and double bond of vinyl acetate
are activated by iodine, making the carbonyl group
more susceptible to nucleophilic attack (Scheme 2).
The inertness of the tertiary alcohol towards this reagent
may be attributed to steric repulsion between the
reagent and the hindered alcohol.
1
12. Kumar, P.; Pandey, R. K.; Bodas, M. S.; Dongare, M. K.
Synlett 2001, 206.
13. Ishii, Y.; Takeno, M.; Kawasaki, Y.; Muromachi, A.;
Nishiyama, Y.; Sakaguchi, S. J. Org. Chem. 1996, 61,
3088.
14. Orita, A.; Mitsutome, A.; Otera, J. J. Org. Chem. 1998, 63,
2420.
15. Ilankumaran, P.; Verkade, J. G. J. Org. Chem. 1999, 64,
9063.
16. (a) Grasa, G. A.; Guveli, T.; Singh, R.; Nolan, S. P.
¨
In conclusion, an efficient catalytic acetylation reaction
using vinyl acetate as the acetylating agent under mild,
neat and neutral conditions has been developed. A vari-
ety of primary and secondary alcohols were acetylated
in good yields. Under these reaction conditions, func-
tional groups such as methoxy, olefinic, spiroketal, ketal
and phenolic remain unaffected. Thus, the catalytic acet-
ylation of alcohols with iodine offers an additional
method using vinyl acetate instead of acetic anhydride
or acetyl chloride as the acetylating agent.
J. Org. Chem. 2003, 68, 2812; (b) Singh, R.; Kissling,
R. M.; Letellier, M.; Nolan, S. P. J. Org. Chem.
2004, 69, 209; (c) Grasa, G. A.; Kissling, R. M.;
Nolan, S. P. Org. Lett. 2002, 4, 3583.
17. Kita, Y.; Maeda, H.; Omaori, K.; Okuno, T.; Tamura, Y.
Synlett 1993, 273.
18. Bosco, J. W. J.; Saikia, A. K. Chem. Commun. 2004, 1116.
19. Shirae, Y.; Mino, T.; Hasegawa, T.; Sakamoto, M.;
Fujita, T. Tetrahedron Lett. 2005, 46, 5877.
20. (a) Dinh, P. M.; Howarth, J. A.; Hudnott, A. R.;
Williams, J. M. J.; Harris, W. Tetrahedron Lett. 1996,
37, 7623; (b) Naemura, K.; Murata, M.; Tanaka, R.;
Yano, M.; Hirose, K.; Tobe, Y. Tetrahedron: Asymmetry
1996, 7, 3285.
Acknowledgement
The authors are grateful to the Council of Scientific and
Industrial Research (CSIR), New Delhi, for financial
assistance.
21. (a) Kim, K. M.; Ryu, E. K. Tetrahedron Lett. 1996, 37,
1441; (b) Karimi, B.; Golshani, B. J. Org. Chem. 2000, 65,