1466
J. Am. Chem. Soc. 1998, 120, 1466-1468
A New, Efficient, and in Some Cases Highly Regioselective
Water-Soluble Polymer Rhodium Catalyst for Olefin
Hydroformylation
Abdelaziz Nait Ajjou and Howard Alper*
Contribution from the UniVersity of Ottawa, Department of Chemistry, 10 Marie Curie,
Ottawa, Ontario, Canada K1N 6N5
ReceiVed August 29, 1997
Abstract: A water-soluble complex Rh/PPA(Na+)/DPPEA 1 was obtained from poly(4-pentenoic acid) (PPA)
and bis[2-(diphenylphosphino)ethyl]amine (DPPEA). Complex 1 is a highly active catalyst for the
hydroformylation of olefins. Some selectivity for linear aldehydes was observed in the hydroformylation of
aliphatic olefins, while high ratios of branched aldehydes resulted in the case of vinyl ethers. Complex 1 is
also the first polymeric water-soluble metal complex which can catalyze the conversion of vinylarenes to
2-arylpropanals in a highly chemoselective and regioselective manner.
Introduction
are effective for the hydroformylation of olefins.8 The enhance-
ment of the catalytic activity was achieved by the addition of
water-soluble organic ligands such as P(Ph(SO3))3 and inorganic
salts which increase the concentration of the catalyst at the
interface.9 Among several new ligands with surfactant
structures,10a-d surface active phosphines,10b,c and poly(enolate-
co-vinyl alcohol-co-vinyl acetate) (PEVV),10d have shown high
activities for the hydroformylation of olefins. Recently, new
water-soluble phosphine ligands were easily prepared by reaction
of diphenylphosphine moieties, with coupling of triphenylphos-
phine moieties to water-soluble polymers.11 We report, herein,
the synthesis of a new water-soluble polymeric rhodium
complex and its application for the hydroformylation of higher
olefins especially vinylarenes.
Aqueous organometallic catalysis has recently become a very
active field of research.1 Processes using water as the solvent
are environmentally and economically attractive. Indeed, in
addition to the ease of catalyst separation from the products,
water is environmentally safe and inexpensive.
Water-soluble transition metal complexes have been used as
catalysts in several significant commercial processes.2 For
example, the water-soluble catalyst HRh(CO)(TPPTS)3
(TPPTS: trisodium tris(m-sulfonatophenyl)phosphine) is used
for the hydroformylation of propene.3 In the case of higher
olefins, the hydroformylation reactions are limited by the
solubility of the substrate in the aqueous phase where the
reaction is presumed to occur.4 To solve this problem, several
approaches have been taken to increase the rate of the hydro-
formylation reaction by improving the affinities between the
two phases. Surfactants5 and modified cyclodextrins6 as well
as polar solvents such as an alcohol7 were added in order to
enhance the reaction rates. Supported aqueous phase catalysts
Results and Discussion
(1) Synthesis of the Water-Soluble Rhodium Catalyst Rh/
PPA(Na+)/DPPEA 1. Poly(4-pentenoic acid) (PPA) (Mw )
4900, Mw/Mn ) 2.96) was prepared by the catalytic hydro-
carboxylation of 1,2-polybutadiene using Pd(OAc)2/DPPB/
HCOOH system (eq 1).12
(1) (a) Cornils, B.; Herrmann, W. A. Applied Homogeneous Catalysis
with Organometallic Compounds; VCH: Weinheim, Germany, 1996; Vol.
2, p 573. (b) Beller, M.; Cornils, B.; Frohning, C. D.; Kohlpainter, C. W.
J. Mol. Catal. 1995, 104, 17. (c) Herrmann, W. A.; Kohlpainter, C. W.
Angew. Chem., Int. Ed. Engl. 1993, 32, 1524. (d) Ungva´ry, F. Coord. Chem.
ReV. 1997, 160, 123. (e) Joo´, F.; Katho´, AÄ . J. Mol. Catal. 1997, 116, 3.
(2) (a) Papadogianakis, G.; Sheldon, R. A. New J. Chem. 1996, 20, 175.
(b) Cornils, B.; Wiebus, E. Chemtech 1995, 25, 33. (c) Cornils, B.; Konkol,
W.; Bach, H.; Daembkes, G.; Gick, W.; Wiebus, E.; Bahrmann, H. German
Patent, 3,415,968, 1985. (d) Mercier, C.; Mignani, G.; Aufrand, M.;
Allmang, G. Tetrahedron Lett. 1991, 32, 1433. (e) Mercier, C.; Chabardes,
P. Pure Appl. Chem. 1994, 66, 1509. (f) Morel, D.; Jenck, J. French Patent,
2,550,202, 1982. (g) Varre, C.; Desbois, M.; Nouvel, J. French Patent,
2,561,650, 1985. (h) Kuntz, E. German Patent, 2,627,354, 1976. (i) Kuntz,
E. U.S. Patent, 4,248,802, 1981.
(8) (a) Davis, M. E. Chemtech 1992, 22, 498. (b) Naughton, M. J. Drago,
R. S. J. Catal. 1995, 155, 383. (c) Bunn, B. B.; Bartik, T.; Bartik, B.; Bedout,
W. R.; Glass, T. E.; Hanson, B. E. J. Mol. Catal. 1994, 94, 157. (d) Yuan,
Y.; Xu, J.; Zhang, H.; Tsai, K. Catal. Lett. 1994, 29, 387. (e) Toth, I.; Guo,
I.; Hanson, B. E. J. Mol. Catal. 1997, 116, 217.
(9) (a) Chaudhari, R. V.; Bhanage, B. M.; Deshpande, R. M.; Delmas,
H. Nature 1995, 373, 501. (b) Cornils, B. Angew. Chem., Int. Ed. Engl.
1995, 34, 1575. (c) Monteil, F.; Queau, R.; Kalck, P. J. Organomet. Chem.
1994, 480, 117.
(3) (a) Kuntz, E. U.S. Patent, 31,812, 1985. (b) Kuntz, E. G. Chemtech.
1987, 17, 570.
(4) (a) Horva´th, I. T. Catal. Lett. 1990, 6, 43. (b) Borowski, A. F.; Cole-
Hamilton, D. J.; Wilkinson, G. NouV. J. Chim. 1978, 2, 137.
(5) (a) Bartik, T.; Bartik, B.; Hanson, B. E. J. Mol. Catal. 1994, 88, 43.
(b) Russel, M. J. H.; Murrer, B. A. U.S. Patent, 4,399,312, 1983. (c)
Bahrmann, H.; Lappe, P. Eur. Patent, 602, 463, 1994.
(6) (a) Monflier, E.; Fre´my, G.; Castanet, Y.; Mortreux, A. Angew. Chem.,
Int. Ed. Engl. 1995, 34, 2269. (b) Monflier, E.; Fre´my, G.; Tilloy, S.;
Castanet, Y.; Mortreux, A. Tetrahedron Lett. 1995, 36, 9481.
(7) Purwanto, P.; Delmas, H. Catal. Today 1995, 24, 135.
(10) (a) Fre´my, G.; Castanet, Y.; Grzybek, R.; Monflier, E.; Mortreux,
A. J. Organomet. Chem. 1995, 505, 11. (b) Bartik, T.; Dig, H.; Bartik, B.;
Hanson, B. E. J. Mol. Catal. 1995, 98, 117. (c) Fell, B.; Pagadogianakis,
G. J. Mol. Catal. 1991, 66, 143. (d) Chen, J.; Alper, H. J. Am. Chem. Soc.
1997, 119, 893.
(11) (a) Malmstro¨m, T.; Weigl, H.; Anderson, C. Organometallics 1995,
14, 2593. (b) Malmstro¨m, T.; Weigl, H.; Anderson, C. J. Chem. Soc., Chem.
Commun. 1996, 1135. (c) Bergbreiter, D. E.; Liu, Y.-S. Tetrahedron Lett.
1997, 38, 3703.
S0002-7863(97)03048-5 CCC: $15.00 © 1998 American Chemical Society
Published on Web 02/07/1998