Table 1 Asymmetric hydroformylation catalysed by [Rh(acac)(CO)
]/4a
2
Notes and references
%
Conv
1 (a) M. Beller, B. Cornils, C. D. Frohning and V. W. Kohlpainter, J. Mol.
Catal., 1995, 104, 17; (b) F. Agboussou, J. F. Carpentier, A. Mortreux,
Chem. Rev., 1995, 95, 2485.
Entry Substrate PCO–PH2 T/°C TOFb (time/h) %Regiod %Eee
c
1
2
3
4
5
6
a
1a
1a
1a
1a
1b
1c
1
1
0.5
0.5
0.5
0.5
40
40
40
20
20
20
98
97
174
18
17
16
98 (10) 97.8
96 (10) 97.7
78 (S)
78 (S)
78 (S)
90 (S)
89 (+)
91 (2)
2 (a) J. E. Babin and G. T. Whiteker, WO 93/03839, US 911, 518, 1992;
(b) G. J. H. Buisman, L. A. van deer Veen, A. Klootwijk, W. G. J. de
Lange, P. C. J. Kamer, P. W. N. M. van Leeuwen and D. Vogt,
Organometallics, 1997, 16, 2929.
3 K. Nozaki, N. Sakai, T. Nanno, T. Higashijima, S. Mano, T. Horiuchi
and H. Takaya, J. Am. Chem. Soc., 1997, 119, 4413.
f
100 (6)
97.9
83 (48) 98.6
80 (48) 98.8
81 (48) 98.6
4
5
G. Franciò and W. Leitner, Chem. Commun., 1999, 1663.
(a) S. Hanessian in Total Synthesis of Natural Products: The “Chiron”
Approach, Pergamon Press, vol. 3, London 1983; (b) J. S. Penne in
Chiral Auxiliaries and Ligands in Asymmetric Synthesis, John Wiley &
Sons, New York, 1995.
2
Reaction conditions: P = 10 bar, styrene (13 mmol), [Rh(acac)(CO) ]
b
21
(
0.013 mmol), toluene (15 mL), PP/Rh = 1.1. TOF in mol styrene 3 Rh
21
c
3
h
determined after 1 h reaction time by GC. % Conversion of styrene
measured by GC. % Regioselectivity defined as 2/(2 + 3). e % Ee
d
f
measured by GC. PP/Rh = 2.
6
(a) H. U. Blaser, Chem. Rev., 1992, 92, 935; (b) H. Brunner and W.
Zettlmeier in Handbook of Enantioselective Catalysis, VCH, Wein-
heim, 1993; (c) T. V. RajanBabu and T. A. Ayers, Tetrahedron Lett.,
(
entry 3). This is in line with detailed kinetic studies on
1
994, 35, 4295; (d) M. T. Reetz and T. Neugebauer, Angew. Chem., Int.
rhodium-catalysed hydroformylation with bulky phosphites
Ed., 1999, 38, 179; (e) T. V. RajanBabu, B. Radetich, K. K. You, T. A.
Ayers, A. L. Casalnuovo and J. C. Calebrese, J. Org. Chem., 1999, 64,
3429 and references cited therein; (f) K. Yonehara, T. Hashizume, K.
Mori, K. Ohe and S. Uemura, Chem. Commun., 1999, 415
7 (a) G. J. H. Buisman, M. E. Martin, E. J. Vos, A. Klootwijk, P. C. J.
Kamer and P. W. N. M. van Leeuwen, Tetrahedron: Asymmetry, 1995,
reported by van Leeuwen et al., who showed that the rate-
determining step is the oxidative addition of H to the acyl–
2
rhodium complex.15 Comparing entries 1 and 3 also shows that
regio- and enantioselectivities are not affected by varying the
partial pressure of CO. A remarkable increase in enantio-
selectivities (up to 91%, entries 4–6) combined with excellent
regioselectivities (up to 98.8%) were found by lowering the
reaction temperature. There were no changes in the enantio-
selectivities over time, which indicates that no decomposition of
the catalyst took place.
6
, 719; (b) O. Pàmies, G. Net, A. Ruiz and C. Claver, Tetrahedron:
Asymmetry, 2000, 11, 1097.
8
(a) O. Pàmies, G. Net, A. Ruiz, C. Bó, J. M. Poblet and C. Claver,
J. Organomet. Chem., 1999, 586, 125; (b) O. Pàmies, M. Diéguez, G.
Net, A. Ruiz and C. Claver, J. Chem. Soc., Dalton Trans., 1999, 3439;
(c) O. Pàmies, G. Net, A. Ruiz and C. Claver, Tetrahedron: Asymmetry,
Results were similar when 4 was used in the asymmetric
hydroformylation of the substituted vinylarenes 1b and 1c. The
presence of different substituents in the para position does not
seem to affect the conversion or the regio- and enantioselectiv-
ities of the hydroformylation.
1999, 10, 2007; (d) O. Pàmies, M. Diéguez, G. Net, A. Ruiz and C.
Claver, Organometallics, 2000, 19, 1488; (e) O. Pàmies, G. Net, A. Ruiz
and C. Claver, Eur. J. Inorg. Chem., in the press.
9
P 2 2
Selected data for 4: d (CD Cl , 233 K) 144.6 (d, 1P, JP2P = 30.9 Hz),
1
45.1 (d, 1P, JP2P = 30.9 Hz).
1
1
0 O. T. Schmidt in Methods in Carbohydrate Chemistry, eds. R. L.
Whistler and M. L. Wolfrom, Academic Press, New York, 1963, Vol.
II.
1 Compound 6 was preprared by a minor modification of the procedure
described in M. Nakjima and S. Takahashi, Agric. Biol. Chem., 1967,
31, 1079.
In conclusion, a novel chiral diphosphite 4, derived from
readily available -(+)-glucose, is a highly efficient ligand for
D
the asymmetric rhodium-catalysed hydroformylation of vinyl
arenes under mild reaction conditions and without an excess of
ligand. The combination of excellent regio- and enantioselectiv-
ities (up to 98.8 and 91% respectively) in simple unoptimised
reactions and the low cost of the ligand make this catalyst
system attractive for further investigation of its potential use for
the industrial preparation of biologically active compounds in
asymmetric hydroformylation. Studies of the scope and mecha-
nistic aspects of the catalytic process are currently in pro-
gress.
12 J. Hiebl and E. Zbiral, Monatsh. Chem., 1990, 121, 691.
13 3,3A-di-tert-butyl-5,5A-dimethoxy-1,1A-biphenyl-2,2A-diyl phosphoro-
chloridite is easily prepared in one step from the corresponding biphenol
as described in (a) G. J. H. Buisman, P. C. J. Kamer and P. W. N. M. van
Leeuwen, Tetrahedron: Asymmetry, 1993, 4, 1625. The corresponding
biphenol is easily prepared on large scale in the same way as the related
4
,4A,6,6A-tetra-tert-butyl-2,2A-biphenol described in (b) T. Jongsma, M.
Fossen and P. W. N. M. van Leeuwen, J. Mol. Catal., 1993, 83, 17.
4 The standard hydroformylation procedure is described in ref. 8d.
15 A. van Rooy, E. N. Orij, P. C. J. Kamer and P. W. N. M. van Leeuwen,
We thank the Spanish Ministerio de Educación y Cultura and
the Generalitat de Catalunya (CIRIT) for their financial support
1
(PB97-0407-CO5-01).
Organometallics, 1995, 14, 34.
1608
Chem. Commun., 2000, 1607–1608