Table 3 Hydroformylation of different olefinsa
b
pR (bar)
Entry
Substrate
T (uC)
p0(CO) (bar)
p0(H2) (bar)
t (h)
Aldehyde (%)
n:i
Alcohol (%)
1
2
3
4
5
6
7
8
a
2-Butenec
1-Pentene
2-Pentene
Octenesd,e
Octenesd,e
Octenesd,e
2-Octened
Styrenef
125
110
125
125
125
140
140
125
2
4
2
2
2
2
2
1.5
10
8
19
18
18
16
16
16
16
15
24
16
24
24
72
24
24
6
68
78
74
10
33
33
47
87
b
98:2
99:1
99:1
97:3
98:2
98:2
99:1
84:16
4
1
3
0.1
2
3
3
1
10
10
10
10
10
10.5
Reaction conditions: aqueous phase: buffer (pH: 8), 73 mmol olefin, olefin:BINAS:Rh 5 2000:5:1. Pressure at reaction temperature.
144 mmol 2-butene (E/Z-mixture), 2-butene:BINAS:Rh 5 4000:5:1. Aqueous phase: 19 ml H2O + 1 ml triethanolamine + 20 ml PEG 300.
Octene mixture (1:2:3:4 5 4:46:34:13). 36.5 mmol styrene, styrene:BINAS:Rh 5 5000:10:1, addition of styrene at reaction temperature.
c
e
d
f
system to give phenylpropanals in 87% yield (TOF 5 725 h21
;
and C. Claver, Kluwer Academic Publishers, Dordrecht, 2000, pp. 57–
59; (b) C. D. Frohning and C. W. Kohlpaintner, in Applied
Homogeneous Catalysis with Organometallic Compounds, ed. B. Cornils,
W. A. Herrmann, VCH, Weinheim, 1996, 1st edn., vol. 1, p. 40.
11 E. Billig, A. G. Abatjoglou and D. R. Bryant, (UCC) EP 213639, 1987,
US 4748261, 1988.
12 P. M. Burke, J. M. Garner, K. A. Kreutzer, A. J. J. M. Teunissen,
C. S. Snijder and C. B. Hansen, (DSM/Du Pont) WO 97/33854, 1997.
13 (a) L. A. van der Veen, P. C. J. Kamer and P. W. N. M. van Leeuwen,
Angew. Chem., 1999, 111, 349-351; L. A. van der Veen, P. C. J. Kamer
and P. W. N. M. van Leeuwen, Angew. Chem. Int. Ed., 1999, 38,
336–338; (b) L. A. van der Veen, P. C. J. Kamer and P. W. N. M. van
Leeuwen, Organometallics, 1999, 18, 4765–4777.
14 D. Selent, D. Hess, K.-D. Wiese, D. Ro¨ttger, C. Kunze and A. Bo¨rner,
Angew. Chem., 2001, 113, 1739–1741; D. Selent, D. Hess, K.-D. Wiese,
D. Ro¨ttger, C. Kunze and A. Bo¨rner, Angew. Chem. Int. Ed., 2001, 40,
1696–1698.
15 H. Klein, R. Jackstell, K.-D. Wiese, C. Borgmann and M. Beller,
Angew. Chem., 2001, 113, 3505–3508; H. Klein, R. Jackstell,
K.-D. Wiese, C. Borgmann and M. Beller, Angew. Chem. Int. Ed.,
2001, 40, 3408–3411.
n:i 5 84:16). Due to the easier hydrogenation of styrene, a lower
catalyst concentration is advantageous compared to the other
experiments.
In conclusion, we have shown here for the first time that the
carbonylation of internal olefins in a biphasic water system is
possible. It is shown that control of the pH and CO partial
pressure are important factors for successful reactions.
Interestingly, the water-soluble catalyst leads to significantly higher
regioselectivity compared to similar catalysts soluble in organic
solvents. The obtained n/i-selectivities exceed all known literature
data and the catalyst can be easily reused several times.
This work was sponsored by the German Federal Ministry of
Education and Research (BMBF), the state Mecklenburg-Western
Pomerania and the ‘‘Fonds der Chemischen Industrie (FCI)’’. We
thank Dr Franz Nierlich and Dr Klaus-Diether Wiese (Degussa
AG) for general discussions. Mrs Susann Buchholz, Dr Christine
Fischer and Dr Wolfgang Baumann (all IfOK) are thanked for
excellent analytical service.
16 K. Tamao, H. Yamamoto, H. Matsumoto, N. Miyake, T. Hayashi and
M. Kumada, Tetrahedron Lett., 1977, 16, 1389–1392.
17 Mixture of the sodium salts of different regioisomers with a sulfonation
degree between 6 and 8.
Holger Klein, Ralf Jackstell and Matthias Beller*
Leibniz-Institut fu¨r Organische Katalyse an der Universita¨t Rostock e.
V., Buchbinderstr. 5-6, D-18055 Rostock, Germany.
E-mail: matthias.beller@ifok.uni-rostock.de
18 (a) H. Bahrmann, K. Bergrath, H.-J. Kleiner, P. Lappe, C. Naumann,
D. Peters and D. Regnat, J. Organomet. Chem., 1996, 520, 97–100; (b)
H. Bahrmann, H. Bach, C. D. Frohning, H.-J. Kleiner, P. Lappe,
D. Peters, D. Regnat and W. A. Herrmann, J. Mol. Catal. A: Chem.,
1997, 116, 49–53.
19 The hydroformylation experiments were carried out in a 300 ml Parr
autoclave at a stirring speed of 1200 min21. The volume of the
reaction mixture was 80 ml (40 ml organic and 40 ml aqueous phase).
Rh(CO)2acac was used as the catalyst precursor and the Rh
concentration in the aqueous solution was 0.91 mM. After adding
all starting materials under argon into the cooled autoclave (ice bath),
the indicated CO- and H2-pressures were applied and stirring
was started. After reaching the reaction temperature, the pressure in
the autoclave was kept constant by delivery of synthesis gas
(CO:H2 5 1:1) via a pressure regulator. After the reaction time
the autoclave was cooled to room temperature and samples
were taken from the organic phase and analyzed by gas
chromatography. Products were identified by comparison with
authentic samples.
Notes and references
1 W. A. Herrmann and C. W. Kohlpaintner, Angew. Chem., 1993, 105,
1588–1609; W. A. Herrmann and C. W. Kohlpaintner, Angew. Chem.,
Int. Ed. Engl., 1993, 32, 1524–1544.
2 (a) C. W. Kohlpaintner, R. W. Fischer and B. Cornils, Appl. Catal., A,
2001, 221, 219–225; (b) B. Cornils, Org. Process Res. Dev., 1998, 2,
121–127; (c) H.-W. Bohnen and B. Cornils, Adv. Catal., 2002, 47, 1–64.
3 For solubility data of olefins in water, see: Hydrocarbons with Water and
Sea Water, ed. D. G. Shaw, M.-C. Hauclait-Pirson, G. T. Hefter and
A. Maczynski, IUPAC Solubility Data Series, vol. 37 and 38, Pergamon
Press, New York, 1989.
4 W. Keim, Green Chem., 2003, 5, 105–111.
5 W. Leitner, Pure Appl. Chem., 2004, 76, 635–644.
20 For studies about the influence of the pH on the hydroformylation for
terminal olefins, see: (a) R. M. Deshpande, Purwanto, H. Delmas and
R. V. Chaudhari, J. Mol. Catal. A: Chem., 1997, 126, 133–140; (b)
E. Mieczy´nska, A. M. Trzeciak and J. J. Ziołkowski, J. Mol. Catal. A:
Chem., 1999, 148, 59–68.
6 D. J. Adams, D. J. Cole-Hamilton, E. G. Hope, P. J. Pogorzelec and
A. M. Stuart, J. Organomet. Chem., 2004, 689, 1413–1417.
7 (a) R. P. J. Bronger, S. M. Silva, P. C. J. Kamer and P. W. N. M. van
Leeuwen, Dalton Trans., 2004, 1590–1596; (b) A. Riisager,
K. M. Eriksen, P. Wasserscheid and R. Fehrmann, Catal. Lett., 2003,
90, 149–153; (c) P. Wasserscheid and W. Keim, Angew. Chem. Int. Ed.,
2000, 39, 3773–3789.
21 F. Joo´, J. Kova´cs, A. C. Be´nyei, L. Na´dasdi and G. Laurenczy, Chem.
Eur. J., 2001, 7, 193–199.
22 For other examples of the drastic influence of the pH value on catalytic
reactions, see: (a) C. Do¨bler, G. Mehltretter and M. Beller, Angew.
Chem., 1999, 111, 3211–3212; C. Do¨bler, G. Mehltretter and M. Beller,
Angew. Chem. Int. Ed., 1999, 38, 3026–3028; (b) C. Do¨bler,
G. Mehltretter, U. Sundermeier and M. Beller, J. Am. Chem. Soc.,
2000, 122, 10289–10297.
8 M. Beller, B. Zimmermann and H. Geissler, Chem. Eur. J., 1999, 5,
1301–1305.
9 A. Seayad, M. Ahmed, H. Klein, R. Jackstell, T. Gross and M. Beller,
Science, 2002, 297, 1676–1678.
10 (a) P. C. J. Kamer, J. N. H. Reek and P. W. N. M. van Leeuwen, in
Rhodium Catalyzed Hydroformylation, ed. P. W. N. M. van Leeuwen
This journal is ß The Royal Society of Chemistry 2005
Chem. Commun., 2005, 2283–2285 | 2285