Page 5 of 6
J Po lue ran sael od fo Mn aot te rai ad l js u Cs ht emm ai rs gt ri yn sA
Journal of Materials Chemistry A
Paper
1
497.
Conclusions
1
1
1
1 W. Lin, H. Cheng, L. He, Y. Yu and F. ZhDaOo,I:J1.0C.10a3ta9l/.D, 02T0A1031,834053G,
10-116.
1
To conclude, Rh nanoclusters confined with MIL-101 have been
synthesized for selective hydrogenation of α, β-unsaturated aldehyde.
Rh@MIL-101 presents excellent performance in selective
hydrogenation of cinnamaldehyde with 98% conversion in 5 h and
over 98% selectivity towards saturated aldehyde. Because Lewis acid
2 W. Sang, T. Zheng, Y. Wang, X. Li, X. Zhao, J. Zeng and J. G.
Hou, Nano Lett., 2014, 14, 6666-6671.
3 X. Yang, D. Chen, S. Liao, H. Song, Y. Li, Z. Fu and Y. Su, J.
Catal., 2012, 291, 36-43.
of MIL-101 interacts with the C=O group, leading to the C=C bond 14 X. Zhang, Y. C. Guo, Z. C. Zhang, J. S. Gao and C. M. Xu, J.
more reactive and avoiding the aldehyde over hydrogenation.
Catal., 2012, 292, 213-226.
Moreover, the electropositive Rh, owning to electron transfer between 15 H. Gu, X. Xu, A. a. Chen, P. Ao and X. Yan, Catal. Commun.,
Rh and MIL-101, prefers to react with C=C bond, further inhibits over
2013, 41, 65-69.
hydrogenating. In addition, the structural synergy of Rh nanoclusters 16 X. Han, R. Zhou, B. Yue and X. Zheng, Catal. Lett., 2006, 109,
and MIL-101 not only promises the high selectivity of α, β-
157-161.
unsaturated aldehyde hydrogenation, but also performs great activity 17 X. Yuan, J. Zheng, Q. Zhang, S. Li, Y. Yang and J. Gong, AIChE
and stability in degrading different aryl fluoride in a mild condition.
The obvious improvement of activity and selectivity by structural
synergistic effect between electropositive Rh and aldehyde protector
MIL-101 provides an effective method to design catalysts for
selective hydrogenation.
J., 2014, 60, 3300-3311.
1
8 S. M. Rogers, C. R. A. Catlow, C. E. Chan-Thaw, A. Chutia, N.
Jian, R. E. Palmer, M. Perdjon, A. Thetford, N. Dimitratos, A. Villa
and P. P. Wells, ACS Catal., 2017, 7, 2266-2274.
9 Y. Long, S. Song, J. Li, L. Wu, Q. Wang, Y. Liu, R. Jin and H.
Zhang, ACS Catal., 2018, 8, 8506-8512.
0 X. Han, R. Zhou, B. Yue and X. Zheng, Catal. Lett., 2006, 109,
157-161.
1 T. Harada, S. Ikeda, Y. H. Ng, T. Sakata, H. Mori, T. Torimoto and
M. Matsumura, Adv. Funct. Mater., 2008, 18, 2190-2196.
1
2
2
Conflict of interest
The authors declare no conflict of interest.
22 Y. Cao, M. Tang, M. Li, J. Deng, F. Xu, L. Xie and Y. Wang, ACS
Sustain. Chem. Eng., 2017, 5, 9894-9902.
2
3 D. J. M. Snelders, N. Yan, W. Gan, G. Laurenczy and P. J. Dyson,
ACS Catal., 2012, 2, 201-207.
Acknowledgements
2
4 M. Tamura, K. Tokonami, Y. Nakagawa and K. Tomishige, ACS
Catal., 2016, 6, 3600-3609.
This work was supported by National Key R&D Program of China
(
2018YFA0108300), High Level Talent of China and Guangdong 25 M. Ibrahim, R. Poreddy, K. Philippot, A. Riisager and E. J. Garcia-
Province, The 100 Talents Plan Foundation of Sun Yat-sen University,
Suarez, Dalton Trans., 2016, 45, 19368-19373.
the Program for Guangdong Introducing Innovative and 26 L. Chen, R. Luque and Y. Li, Chem. Soc. Rev., 2017, 46, 4614-
Entrepreneurial Teams (2017ZT07C069), and the NSFC Projects
21821003, 21890380).
4630.
(
27 K. Shen, L. Zhang, X. Chen, L. Liu, D. Zhang, Y. Han, J. Chen, J.
Long, R. Luque, Y. Li and B. Chen, Science, 2018, 359, 206-210.
2
2
3
3
3
3
8 K. Na, K. M. Choi, O. M. Yaghi and G. A. Somorjai, Nano Lett.,
014, 14, 5979-5983.
9 S. Dissegna, K. Epp, W. R. Heinz, G. Kieslich and R. A. Fischer,
Adv. Mater., 2018, 30, 1704501.
0 K. Jayaramulu, F. Geyer, M. Petr, R. Zboril, D. Vollmer and R. A.
Fischer, Adv. Mater., 2017, 29, 1605307.
1 R. Medishetty, L. Nemec, V. Nalla, S. Henke, M. Samoć, K. Reuter
and R. A. Fischer, Angew. Chem. Int. Ed., 2017, 129, 14938-14943.
2 H. Liu, L. Chang, L. Chen and Y. Li, J. Mater. Chem. A, 2015, 3,
2
Notes and references
1
2
M. Poliakoff and P. Licence, Nature, 2007, 450, 810.
Y. Ren, Y. Tang, L. Zhang, X. Liu, L. Li, S. Miao, D. Sheng Su, A.
Wang, J. Li and T. Zhang, Nat. Commun., 2019, 10, 4500.
J. Zhang, L. D. Ellis, B. Wang, M. J. Dzara, C. Sievers, S. Pylypenko,
E. Nikolla and J. W. Medlin, Nat. Catal., 2018, 1, 148-155.
J. Zhang, B. Wang, E. Nikolla and J. W. Medlin, Angew. Chem. Int.
Ed., 2017, 56, 6594-6598.
3
4
5
6
7
8
9
1
8
028-8033.
3 M. Rivera-Torrente, M. Filez, R. Hardian, E. Reynolds, B. Seoane,
M. V. Coulet, F. E. Oropeza Palacio, J. P. Hofmann, R. A. Fischer,
A. L. Goodwin, P. L. Llewellyn and B. M. Weckhuysen, Chem.-
Eur. J., 2018, 24, 7498-7506.
M. Zhao, K. Yuan, Y. Wang, G. Li, J. Guo, L. Gu, W. Hu, H. Zhao,
and Z. Tang, Nature, 2016, 539, 76-80.
M. Tamura, D. Yonezawa, T. Oshino, Y. Nakagawa and K.
Tomishige, ACS Catal., 2017, 7, 5103-5111.
3
4 C. Rosler, S. Dissegna, V. L. Rechac, M. Kauer, P. Guo, S. Turner,
K. Ollegott, H. Kobayashi, T. Yamamoto, D. Peeters, Y. Wang, S.
Matsumura, G. Van Tendeloo, H. Kitagawa, M. Muhler, I. X. F.
X. Llabres and R. A. Fischer, Chem.- Eur. J., 2017, 23, 3583-3594.
5 J. Cheng, X. Gu, P. Liu, T. Wang and H. Su, Journal of Materials
Chemistry A, 2016, 4, 16645-16652.
Y. Nakagawa, K. Takada, M. Tamura and K. Tomishige, ACS Catal.,
2
014, 4, 2718-2726.
L. O. Mark, N. Agrawal, A. M. Román, A. Holewinski, M. J. Janik
and J. W. Medlin, ACS Catal., 2019, 9, 11360-11370.
3
3
P. Wang, Q. Shao, X. Cui, X. Zhu and X. Huang, Adv. Funct. Mater.,
2
018, 28, 1705918.
6 J. Song, X. Gu, J. Cheng, N. Fan, H. Zhang and H. Su, Applied
0 H. Liu, Z. Li and Y. Li, Ind. Eng. Chem. Res., 2015, 54, 1487-
This journal is © The Royal Society of Chemistry 2020
J. Mater. Chem. A, 2020, X, XXXXX-XXXXX
Please do not adjust margins