1428
L. Zhang et al. / Tetrahedron Letters 51 (2010) 1426–1429
Table 1
100
cathodic product
anodic product
Paired electrochemical synthesis homoallylic alcohols from alcohols in a divided cell
Graphite anode
NaBr,HBr
H2O/CH2Cl2
(5:1)
Graphite cathode
SnCl2
H2O/CH2Cl2
80
60
40
20
0
(5:1)
KNO3
OH
O
O
KNO3
R
OH
R
R
H
R
H
Br
1a-o
2a-o
R= Alkyl, Aryl
3a-o
1k-m was secondary alcohol,
2k-m and 3k-m were the corresponding products
Entry
1
Substrate 1
Product 2
Yielda (%)
Product 3
Yielda (%)
OH
2a
95
3a
91
93
1
2
3
4
5
OH
Cycles
2
2b
85
3b
Figure 3. The reaction yields of each round for the paired electrosynthesis of
benzaldehyde and the corresponding homoallylic alcohols.
OH
OH
3
4
5
2c
2d
2e
97
97
84
3c
3d
3e
93
92
92
Cl
paired electroysnthesis to other reactions is in progress in our
laboratory.
Br
OH
OH
O2N
Acknowledgments
6
7
8
2f
85
97
45
3f
88
90
33
H3C
The authors are grateful to National Natural Science Foundation
of China (No. 20772118) for support.
OH
Br
2g
2h
3g
3h
References and notes
OH
NO2
1. (a) Organic Electrochemistry; Lund, H., Hammerich, O., Eds.; Marcel Dekker:
New York, 2001; (b) Bard, A. J.; Stratmann, M. Organic Electrochemistry. In
Encyclopedia of Electrochemistry; Schafer, H. J., Ed.; Wiley-VCH: Weinheim,
2004; Vol. 8, (c) Turygin, V. V.; Tomilov, A. P.; Kaabak, L. V. Russ. J. Electrochem.
2007, 43, 1106; (d) Yoshida, J.-I.; Kataoka, K.; Horcajada, R.; Nagaki, A. Chem.
Rev. 2008, 108, 2265.
2. Anastas, P. T.; Warner, J. C. Green Chemistry: Theory and Practice; Oxford
University Press: New York, 1997; (b) Anastas, P. T.; Kirchhoff, M. M. Acc. Chem.
Res. 2002, 35, 686; (c) Steckhan, E.; Arns, T.; Heineman, W. R.; Hilt, G.;
Hoormann, D.; Jörissen, J.; Kröner, L.; Lewall, B.; Pütter, H. Chemosphere 2001,
43, 63; (d) Siu, T.; Yudin, A. K. J. Am. Chem. Soc. 2002, 124, 530.
3. (a) Grigg, P.; Putnikovic, B.; Urch, C. J. Tetrahedron Lett. 1997, 38, 6307; (b)
Nematollahi, D.; Rahchamani, R. A. J. Electroanal. Chem. 2002, 520, 145; (c) Seka,
S.; Burize, O.; Nédélec, J. Y.; Périchon, J. Chem. Eur. J. 2002, 8, 2534; (d) Hilt, G.
Angew. Chem., Int. Ed. 2002, 41, 3586; (e) Gomes, P.; Gosmini, C.; Périchon, J. J.
Org. Chem. 2003, 68, 1142.
4. (a) Jansson, R. E. W.; Tomov, N. R. J. Appl. Electrochem. 1980, 10, 583; (b) Tanaka,
H.; Kawakami, V.; Goto, K.; Kuroboshi, M. Tetrahedron Lett. 2001, 42, 445; (c)
Liaigre, D.; Breton, T.; Mustapha Belgsir, E. I. Electrochem. Commun. 2005, 7,
312; (d) Yusuke, J.; Koichi, M. S.; Tanaka, H. Tetrahedron Lett. 2005, 46, 8975; (e)
Demizu, Y.; Shiigi, H.; Oda, T.; Matsumura, Y.; Onomura, O. Tetrahedron Lett.
2008, 49, 48; (f) Shiigi, H.; Mori, H.; Tanaka, T.; Demizu, Y.; Onomura, O.
Tetrahedron Lett. 2008, 49, 5247; (g) Yoshida, T.; Kuroboshi, M.; Oshitani, J.;
Gotoh, K.; Tanaka, H. Synlett 2007, 17, 2691; (h) Mitsudo, K.; Kumagai, H.;
Takabatake, F.; Kubota, J.; Tanaka, H. Tetrahedron Lett. 2007, 48, 8994.
5. Raju, T.; Manivasagan, S.; Revathy, B.; Kulangiappear, K.; Muthukumaran, A.
Tetrahedron Lett. 2007, 48, 3681.
6. (a) Hilt, G.; Smolko, K. I. Angew. Chem., Int. Ed. 2001, 40, 3399; (b) Hilt, G.;
Smolko, K. I.; Waloch, C. Tetrahedron Lett. 2002, 43, 1437; (c) Hilt, G. Angew.
Chem., Int. Ed. 2003, 42, 1720.
7. (a) Zha, Z. G.; Hui, A. L.; Zhou, Y. Q.; Miao, Q.; Wang, Z. Y.; Zhang, H. C. Org. Lett.
2005, 7, 1903; (b) Huang, J.-M.; Dong, Y. Chem. Commun. 2009, 26, 3943.
8. Koo, B. S.; Lee, C. K.; Lee, K. J. Synth. Commun. 2002, 32, 2115.
9. (a) Chan, T. H.; Yang, Y. J. Org. Chem. 1999, 64, 4452; (b) Tan, X. H.; Hou, Y. Q.;
Huang, C.; Liu, L.; Guo, Q. X. Tetrahedron 2004, 60, 6129; (c) Zha, Z. G.; Qiao, S.;
Jiang, J.; Wang, Y.; Miao, Q.; Wang, Z. Y. Tetrahedron 2005, 61, 2521.
10. Nematollahi, D.; Akaberi, N. Molecules 2001, 6, 639.
11. (a) Qiao, Z. Q.; Shang, W.; Zhang, X.; Wang, C. M. Anal. Bioanal. Chem. 2005, 381,
1467; (b) Anuar, K.; Tan, W. T.; Atan, M. S.; Dzulkefly, K.; Ho, S. M.; Jelas, H.,
Md.; Saravanan, N. Pac. J. Sci. Technol. 2007, 8, 252.
OH
9
2i
2j
46
82
3i
3j
76
80
OH
OH
10
5
11
12
2k
2l
99
98
3k
3l
0
OH
OH
20
13
14
2m
2n
88
85
3m
3n
87
96
OH
O
S
OH
15
2o
82
3o
71
a
Isolated yield.
oxidation in one cell,5 the yields were enhanced largely, especially
for the substrates of 4-nitrobenzyl alcohol, heptanal and diphenyl
methanol (entries 4, 10 and 11). It should be noted that the method
of paired electrosynthesis facilitated the reaction of two electrodes.
Also, we found that the amount of SnCl2 and NaBr could be reduced
to the catalytic amount and could be reused for five times without
obvious loss in catalytic activity. For example, the carbonyl com-
pound and corresponding homoallylic alcohol were obtained with
a high yield of more than 80% after the fifth round. The slight de-
crease of the reaction yield was possibly due to the loss of SnCl2
and NaBr in the extraction (Fig. 3).
In summary, the carbonyl compounds and the corresponding
homoallylic alcohols can be prepared by using a simple paired
electrosynthesis in a divided cell. The employment of these paired
electrodes makes mediators approach to catalysts without the sac-
rification of electrodes. Moreover, this electrochemical method
should be potential in organic synthesis. The application of this
12. Typical procedures: A divided cell with salt bridge of KNO3 was equipped with
a graphite electrode (dia.3.0 mm) as anode, a graphite electrode (dia.3.0 mm)
as cathode and the saturated calomel electrode at room temperature.
A
solution of benzyl alcohol (2 mmol) in 1 mL of CH2Cl2 was added in anodic
compartment. To the solution, a solution of 0.1 M sodium bromide solution
(5 mL), 48% HBr (0.1 mL) and KNO3 (0.05 M) were added as aqueous phase. In
cathodic compartment, 0.1 M SnCl2 (5 mL) and KNO3 (0.05 M) were added as
aqueous, a solution of benzaldehyde (2 mmol), allyl bromide (3 mmol) in 1 mL