Communication
doi.org/10.1002/ejoc.202000337
EurJOC
European Journal of Organic Chemistry
[3] F. Zhang, D. R. Spring, Chem. Soc. Rev. 2014, 43, 6906–6919.
[4] R. Taylor, Electrophilic Aromatic Substitution, Wiley-VCH, Weinheim, Ger-
many, 1990.
[5] J. F. Bunnett, R. E. Zahler, Chem. Rev. 1951, 49, 273–412.
[6] H. Amii, K. Uneyama, Chem. Rev. 2009, 109, 2119–2183.
[7] F. Terrier, Modern Nucleophilic Aromatic Substitution, Wiley-VCH, Wein-
heim, Germany, 2013.
[8] D. G. Brown, J. Bostrom, J. Med. Chem. 2016, 59, 4443–4458.
[9] For example Chapters 1 and 7, in Palladium-Catalyzed Coupling Reactions:
Practical Aspects and Future Developments (Ed.: A. Molnár), Wiley-VCH,
Weinheim, Germany, 2013.
[10] For example Chapters 2–9, 13, 17, 18 and 19, in Metal-Catalyzed Cross-
Coupling Reactions and More, 1, 2 and 3 (Eds.: A. de Meijere, S. Bräse, M.
Oestreich), Wiley-VCH, Weinheim, Germany, 2013.
cyclohexadienyl radical (e.g. 15) by the DDQ radical anion will
be dependent on the electronics of each substrate. All of the
above result in the requirement for mildly electron-poor arene
substrates. The balance of these factors accounts, in part, for
the range of yields for the photochemical SNAr.[21] For arene
substrate 7 where regioisomeric substitution products can be
formed, the regioselectivity is dictated by the charge density in
the first formed radical cation (see ESI). In line with the results
from Fukuzumi[15] and Lambert[21] further substitution of the
original SNAr products is not observed.[32]
[11] E. E. Kwan, Y. Zeng, H. A. Besser, E. N. Jacobsen, Nat. Chem. 2018, 10,
917–923.
[12] A. J. Blacker, G. Moran-Malagon, L. Powell, W. Reynolds, R. Stones, M. R.
Chapman, Org. Process Res. Dev. 2018, 22, 1086–1091.
[13] N. E. S. Tay, D. A. Nicewicz, J. Am. Chem. Soc. 2017, 139, 16100–16104.
[14] N. A. Romero, D. A. Nicewicz, Chem. Rev. 2016, 116, 10075–10166.
[15] K. Ohkubo, A. Fujimoto, S. Fukuzumi, J. Am. Chem. Soc. 2013, 135, 5368–
5371.
[16] P. B. Merkel, P. Luo, J. P. Dinnocenzo, S. Farid, J. Org. Chem. 2009, 74,
5163–5173.
[17] N. A. Romero, K. A. Margrey, N. E. Tay, D. A. Nicewicz, Science 2015, 349,
1326–1330.
[18] L. Marzo, S. K. Pagire, O. Reiser, B. König, Angew. Chem. Int. Ed. 2018, 57,
10034–10072; Angew. Chem. 2018, 130, 10188.
[19] S. Das, P. Natarajan, B. König, Chem. Eur. J. 2017, 23, 18161–18165.
[20] A. Dahiya, A. K. Sahoo, T. Alam, B. K. Patel, Chem. Asian J. 2019, 14, 4454–
4492.
[21] H. Huang, T. H. Lambert, Angew. Chem. Int. Ed. 2020, 59, 658–662; Angew.
Chem. 2020, 132, 668–672.
[22] Nicewicz proposed stabilization of radical cations with trifluoroethanol
as solvent see ref 13.
Figure 3. Potential mechanism for photochemical SNAr reaction.
In summary, we have developed a mild method for the C–F
functionalization of fluoroarenes by a photochemical SNAr reac-
tion using DDQ. The method is operationally simple to conduct
and complements the closely-related photoelectrochemical
method reported recently by Lambert and co-worker.
[23] L. Eberson, M. P. Hartshorn, O. Persson, F. Radner, Chem. Commun. 1996,
2105–2112.
[24] I. Colomer, R. C. Barcelos, K. E. Christensen, T. J. Donohoe, Org. Lett. 2016,
18, 5880–5883.
[25] I. Colomer, A. E. R. Chamberlain, M. B. Haughey, T. J. Donohoe, Nat. Rev.
Chem. 2017, 1, 0088.
[26] For the importance of hydrogen bonding with hexafluoro2-propanol in
alkene expoxidation with hydrogen peroxide see: A. Berkessel, J. A.
Adrio, D. Hüttenhain, J. M. Neudörfl, J. Am. Chem. Soc. 2006, 128, 8421–
8426.
[27] K. A. Margrey, J. B. McManus, S. Bonazzi, F. Zecri, D. A. Nicewicz, J. Am.
Chem. Soc. 2017, 139, 11288–11299.
Acknowledgments
THS is grateful to the EPSRC Centre for Doctoral Training in
Synthesis for Biology and Medicine (EP/L015838/1) for a stu-
dentship, generously supported by AstraZeneca, Diamond Light
Source, Defence Science and Technology Laboratory, Evotec,
GlaxoSmithKline, Janssen, Novartis, Pfizer, Syngenta, Takeda,
UCB and Vertex. The authors would like to acknowledge the
use of the University of Oxford Advanced Research Computing
zenodo.22558.
[28] C. Grewer, H.-D. Brauer, J. Phys. Chem. 1994, 98, 4230–4235.
[29] Other mechanistic scenarios are possible including the potential loss of
fluroide from 15 to give the radical cation of 1a which then accepts an
electron to give product.
[30] D. Walker, J. D. Hiebert, Chem. Rev. 1967, 67, 153–195.
[31] A. E. Wendlandt, S. S. Stahl, Angew. Chem. Int. Ed. 2015, 54, 14638–14658;
Angew. Chem. 2015, 127, 14848.
Keywords: Photochemistry · SNAr · DDQ · C–F activation
[32] Exposure of 1a to the same reaction conditions as Table 1, entry 9, with
10 equiv. of ethanol in place of 10 equiv. of methanol resulted in com-
plete recovery of 1a after irradiation in the presence of DDQ for 48 h.
[1] For example see Chapters 3, 4 and 10, in Modern Arene Chemistry (Ed.:
D. Astruc), Wiley-VCH, Weinheim, Germany, 2013.
[2] T. Cernak, K. D. Dykstra, S. Tyagarajan, P. Vachal, S. W. Krska, Chem. Soc.
Rev. 2016, 45, 546–576.
Received: March 13, 2020
Eur. J. Org. Chem. 2020, 1–6
5
© 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim