Cu2+ Liposome Combined with DSF for Improving Synergistic Effect (2018) 35:147
Page 11 of 11 147
treatment improved therapeutic efficacy of liposomal paclitaxel in
mice bearing tumors with low permeable vasculature. J Control
Release. 2015;200:106–14.
21. Seo JW, Zhang H, Kukis DL, Meares CF, Ferrara KW. A novel
method to label preformed liposomes with 64Cu for positron emis-
sion tomography (PET) imaging. Bioconjug Chem. 2008;19(12):
2577–84.
22. Wantong Songa ZT, Bpharm TL, Wen X, Wang G, Bpharm DZ,
Deng M, et al. Stable loading and delivery of disulfiram with
mPEG-PLGA/PCL mixed nanoparticles for tumor therapy.
Nanomed Nanotechnol Biol Med. 2015;12(2):377–86.
23. Ningzhong P, Xinmin Q, Ling G, Liming S. Preparation method
for metal oleate[P]: China. 2015.
24. Gabizon A, Shmeeda H, Barenholz Y. Pharmacokinetics of
pegylated liposomal doxorubicin: review of animal and human
studies. Clin Pharmacokinet. 2003;42(5):419–36.
25. Xu X, Wang L, Xu HQ, Huang XE, Qian YD, Xiang J. Clinical
comparison between paclitaxel liposome (Lipusu®) and paclitaxel
for treatment of patients with metastatic gastric cancer. Asian Pac J
Cancer Prev. 2013;14(4):2591–4.
26. Boman NL, Masin D, Mayer LD, Cullis PR, Bally MB. Liposomal
vincristine which exhibits increased drug retention and increased
circulation longevity cures mice bearing P388 tumors. Cancer Res.
1994;54(11):2830–3.
27. Hinrichs WLJ, Manceñido FA, Sanders NN, Braeckmans K,
Smedt SCD, Demeester J, et al. The choice of a suitable oligosac-
charide to prevent aggregation of PEGylated nanoparticles during
freeze thawing and freeze drying. Int J Pharm. 2006;311(1–2):237–
44.
28. Fahr A, Van HP, May S, Bergstrand N, Ml SL. Transfer of lipo-
philic drugs between liposomal membranes and biological inter-
faces: consequences for drug delivery. Eur J Pharm Sci.
2005;26(3–4):251–65.
29. Zeng X, Tao W, Mei L, Huang L, Tan C, Feng SS. Cholic acid-
functionalized nanoparticles of star-shaped PLGA-vitamin E
TPGS copolymer for docetaxel delivery to cervical cancer.
Biomaterials. 2013;34(25):6058–67.
30. Allen TM, Mehra T, Hansen C, Chin YC. Stealth liposomes: an
improved sustained release system for 1-beta-D-
arabinofuranosylcytosine. Cancer Res. 1992;52(9):2431–9.
31. Davis ME, Zhuo C, Dong MS. Nanoparticle therapeutics: an
emerging treatment modality for cancer. Nat Rev Drug Discov.
2008;7(9):771–82.
32. Yang F, Cong C, Huang Y, Fang Z, Lin G. Study of the pH-
sensitive mechanism of tumor-targeting liposomes. Colloids Surf.
B Biointerfaces. 2017;151:19.
33. Tian L, You HB. Cancer nanomedicines targeting tumor extracel-
lular pH. Colloids Surf B. Biointerfaces. 2012;99(99):116–26.
34. Hefesha H, Loew S, Liu X, May S, Fahr A. Transfer mechanism of
temoporfin between liposomal membranes. J Control Release.
2011;150(3):279–86.
7. Vahed SZ, Salehi R, Davaran S, Sharifi S. Liposome-based drug
co-delivery systems in cancer cells. Mater Sci Eng C Mater Biol
Appl. 2017;71:1327–41.
8. Mohammad IS, He W, Yin LA. Smart paclitaxel-disulfiram
nanococrystals for efficient MDR reversal and enhanced apoptosis.
Pharm Res. 2018;35(4):77.
9. Triscott J, Lee C, Hu K, Fotovati A, Berns R, Pambid M, et al.
Disulfiram, a drug widely used to control alcoholism, suppresses the
self-renewal of glioblastoma and over-rides resistance to temozolo-
mide. Oncotarget. 2012;3(10):1112–23.
10. Liu P, Brown S, Goktug T, Channathodiyil P, Kannappan V, H J-
P, et al. Cytotoxic effect of disulfiram/copper on human glioblasto-
ma cell lines and ALDH-positive cancer-stem-like cells. Br J
Cancer. 2013;108(4):993.
11. Duan L, Shen H, Zhao G, Yang R, Cai X, Zhang L, et al. Inhibitory
effect of disulfiram/copper complex on non-small cell lung cancer
cells. Biochem Biophys Res Commun. 2014;446(4):1010–6.
12. Nayak SB, Bhat VR, Upadhyay D, Udupa SL. Copper and ceru-
loplasmin status in serum of prostate and colon cancer patients.
Indian J Physiol Pharmacol. 2003;47(1):108.
13. Lewis EA, Tolman WB. Reactivity of dioxygen—copper systems.
ChemInform. 2004;104(2):1047–76.
14. Mandinov L, Mandinova A, Kyurkchiev S, Kyurkchiev D,
Kehayov I, Kolev V, et al. Copper chelation represses the vascular
response to injury. Proc Natl Acad Sci U S A. 2003;100(11):6700–
5.
15. Skrott Z, Mistrik M, Andersen KK, Friis S, Majera D, Gursky J,
et al. Alcohol-abuse drug disulfiram targets cancer via p97 segregase
adaptor NPL4. Nature. 2017;552(7684):194.
16. Zheng G, Zhang J, Xu Y, Shen X, Song H, Jing J, et al. Involvement
of CTR1 and ATP7A in lead (Pb)-induced copper (Cu) accumula-
tion in choroidal epithelial cells. Toxicol Lett. 2014;225(1):110–8.
17. Wang Y, Hodgkinson V, Zhu S, Weisman GA, Petris MJ.
Advances in the understanding of mammalian copper transporters.
Adv Nutr. 2011;2(2):129–37.
18. Wang Y, Zeng S, Lin TM, Krugnerhigby L, Lyman D, Steffen D,
et al. Evaluating the anticancer properties of liposomal copper in a
nude xenograft mouse model of human prostate cancer: formula-
tion, in vitro, in vivo, histology and tissue distribution studies.
Pharm Res. 2014;31(11):3106–19.
19. Tagami T, May JP, Ernsting MJ, Li SD. A thermosensitive lipo-
some prepared with a Cu 2+ gradient demonstrates improved
pharmacokinetics, drug delivery and antitumor efficacy. J Control
Release. 2012;161(1):142–9.
20. Seo JW, Ang JC, Mahakian LM, Tam S, Fite B, Ingham ES, et al.
Self-assembled 20-nm 64Cu-micelles enhance accumulation in rat
glioblastoma. J Control Release. 2015;220(Pt A):51–60.