270 Fukukawa et al.
Macromolecules, Vol. 38, No. 2, 2005
(7) Gabor, A. H.; Lehner, E. A.; Mao, G. P.; Schneggenburger,
L. A.; Ober, C. K. Chem. Mater. 1994, 6, 927.
(8) Zharov, I.; Michl, J.; Sherwood, M. H.; Sooriyakamaran, R.;
Larson, C. E.; DiPietro, R. A.; Breyta, G.; Wallraff, G. M.
Chem. Mater. 2002, 14, 656.
unimolecular nitroxide-mediated living free radical po-
lymerization. The monomer addition sequence, use of
polar solvents (DMF vs DCB), and highly reactive
R-hydride unimer as an initiator are the key to the
success of copolymerization. Polymerization conditions,
including time and temperature of polymerization,
monomer reactivity, and addition of rate accelerating
agent, were also investigated in detail to control the
polymerization and achieve high conversion. The po-
lymerization temperature was chosen at 100 °C to
minimize thermal decomposition of the synthesized
monomers at the normal polymerization temperature
for styrene (∼130 °C). Both TEM and SAXS data showed
that these polymers formed cylindrical, lamellae, or
disordered structures depending on the volume ratio
between the blocks and their molecular weights. When
silicon-containing block was the major phase, the block
copolymer films were more robust to oxygen plasma and
maintained the morphologies. When silicon content in
cylindrical block copolymers was greater than 12 wt %,
domain size changed very little.
(9) Bowden, M.; Malik, S.; Dilocker, S. J. Photopolym. Sci.
Technol. 2003, 16, 629.
(10) Avgeropoulos, A.; Chan, V. Z. H.; Lee, V. Y.; Ngo, D.; Miller,
R. D.; Hadjichristidis, N.; Thomas, E. L. Chem. Mater. 1998,
10, 2109.
(11) Chan, V. Z.-H.; Hoffman, J.; Lee, V. Y.; Iatrou, H.; Avgeropou-
los, A.; Hadjichristidis, N.; Miller, R. D.; Thomas, E. L.
Science 1999, 286, 1716.
(12) Hartney, M. A.; Novembre, A. E.; Bates, F. S. J. Vac. Sci.
Technol. B 1985, 3, 1346.
(13) Gabor, A. H.; Ober, C. K. In Microelectronics Technology;
American Chemical Society: Washington, DC, 1995; Vol. 614,
p 281.
(14) Matyjaszewski, K. In Advances in Controlled/Living Radical
Polymerization; American Chemical Society: Washington,
DC, 2003; Vol. 854, p 2.
(15) Hawker, C. J. J. Am. Chem. Soc. 1994, 116, 1185.
(16) Benoit, D.; Chaplinski, V.; Braslau, R.; Hawker, C. J. J. Am.
Chem. Soc. 1999, 121, 3904.
(17) Hawker, C. J.; Bosman, A. W.; Harth, E. Chem. Rev. 2001,
101, 3661.
Successful synthesis of the novel silicon-containing
block copolymers could enable potential applications as
(1) direct nanopatterning of III-V semiconductors at
high temperatures (>600 °C), (2) formation of nanopo-
rous ceramic films by selectively removing the non-
silicon blocks, and (3) fabrication of hierarchical hybrid
nanostructures using photosensitive silicon-containing
block copolymers.
(18) Wang, J.-S.; Matyjaszewski, K. Macromolecules 1995, 28,
7901.
(19) Matyjaszewski, K.; Xia, J. Chem. Rev. 2001, 101, 2921.
(20) Chiefari, J.; Chong, Y. K.; Ercole, F.; Krstina, J.; Jeffery, J.;
Le, T. P. T.; Mayadunne, R. T. A.; Meijs, G. F.; Moad, C. L.;
Moad, G.; Rizzardo, E.; Thang, S. H. Macromolecules 1998,
31, 5559.
(21) Chong, Y. K.; Le, T. P. T.; Moad, G.; Rizzardo, E.; Thang, S.
H. Macromolecules 1999, 32, 2071.
(22) Mayadunne, R. T. A.; Rizzardo, E.; Chiefari, J.; Chong, Y.
K.; Moad, G.; Thang, S. H. Macromolecules 1999, 32, 6977.
(23) Goto, A.; Sato, K.; Tsujii, Y.; Fukuda, T.; Moad, G.; Rizzardo,
E.; Thang, S. H. Macromolecules 2001, 34, 402.
(24) Benoit, D.; Chaplinski, V.; Braslau, R.; Hawker, C. J. J. Am.
Chem. Soc. 1999, 121, 3904.
Acknowledgment. K.F. is grateful for Bell Labs
research scholarship for his internship at Bell Labora-
tories, Lucent Technologies. This work was partially
supported by NSF CAREER Award DMR-0348724
(L.Z.). The synchrotron SAXS experiments were car-
ried out in the National Synchrotron Light Source,
Brookhaven National Laboratory, supported by the
DOE.
(25) Kawakami, Y.; Hisada, H.; Yamashita, Y. J. Polym. Sci., Part
A: Polym. Chem. 1988, 26, 1307.
(26) Reichmanis, E.; Smolinsky, G. Proc. SPIE Adv. Resist Tech-
nol. 1984, 469, 38.
(27) Negishi, E.; Takahashi, T.; King, A. O. Org. Synth. 1988, 66,
67.
(28) Nagasaki, Y.; Tsuruta, T. Makromol. Chem. Rap. Comm.
1986, 7, 437.
References and Notes
(1) Harrison, C.; Park, M.; Chaikin, P. M.; Register, R. A.;
Adamson, D. H. J. Vac. Sci. Technol. B 1998, 16, 544.
(2) Park, M.; Harrison, C.; Chaikin, P. M.; Register, R. A.;
Adamson, D. H. Science 1997, 276, 1401.
(3) Black, C. T.; Guarini, K. W.; Milkove, K. R.; Baker, S. M.;
Russell, T. P.; Tuominen, M. T. Appl. Phys. Lett. 2001, 79,
409.
(4) Kim, H. C.; Jia, X. Q.; Stafford, C. M.; Kim, D. H.; McCarthy,
T. J.; Tuominen, M.; Hawker, C. J.; Russell, T. P. Adv. Mater.
2001, 13, 795.
(5) Thurn-Albrecht, T.; Schotter, J.; Kastle, G. A.; Emley, N.;
Shibauchi, T.; Krusin-Elbaum, L.; Guarini, K.; Black, C. T.;
Tuominen, M. T.; Russell, T. P. Science 2000, 290, 2126.
(6) Saotome, Y.; Gokan, H.; Saigo, K.; Suzuki, M.; Ohnishi, Y.
J. Electrochem. Soc. 1985, 132, 909.
(29) Barton, T. J.; Boudjouk, P. In Advances in Chemistry Series:
Silicon-Based Polymer Science Comprehensive Resource; Zei-
gler, J. M., Fearon, F. W. G., Eds.; American Chemical
Society: Washington, DC, 1990; Vol. 224, p 12.
(30) Hirao, A.; Nakahama, S. Prog. Polym. Sci. 1992, 17, 283.
(31) Imoto, M.; Kinoshit, M.; Nishigak, M. Makromol. Chem. 1965,
86, 217.
(32) Saigo, K. J. Polym. Sci., Part A: Polym. Chem. 1989, 27, 2203.
(33) Gopalan, P.; Ober, C. K. Macromolecules 2001, 34, 5120.
(34) Malmstrom, E. M.; Robert, D.; Hawker, Craig, J. Tetrahedron
1997, 53, 15225.
(35) Barclay, G. G.; Hawker, C. J.; Ito, H.; Orellana, A.; Malenfant,
P. R. L.; Sinta, R. F. Macromolecules 1998, 31, 1024.
MA049217U