Communications
Organometallics, Vol. 19, No. 26, 2000 5545
F igu r e 3. van’t Hoff plot for the equilibrium shown in eq
2.
F igu r e 2. ORTEP drawing of (dippe)Ni(Ph)(CN) (2).
Ellipsoids are shown at the 30% level. Selected distances
(Å) and angles (deg): N(1)-C(7) ) 1.148(3), Ni(1)-C(1) )
Keq over the temperature range 41-91 °C allowed for
the extraction of the thermodynamic parameters ∆H°
) 4.00(22) kcal/mol and ∆S° ) 10.9(6) eu from a van’t
Hoff plot (Figure 3). While a few examples of C-CN
cleavage have been reported,9 the reversibility of this
reaction is not well-documented.10 The present observa-
tions are particularly impressive, considering the strength
of the C-CN bond in benzonitrile (132.7 kcal/mol).11 η2-
Coordination of nitriles is also known.12 Control of the
reversibility might lead to improved regioselectivity in
the hydrocyanation of olefins.
1.935(2), Ni(1)-C(7)
) 1.877(3); C(1)-Ni(1)-C(7) )
89.62(10).
1
geometry. The H NMR spectrum, however, shows no
evidence for hindered rotation around the C1-C2 bond.
If a THF solution of 1 is allowed to stand at room
temperature, a new product is observed to grow in over
several days as the solution turns a pale yellow. The
new product 2 has symmetry similar to that of 1, as
the 1H and 31P NMR spectra also display similar
patterns of resonances.7 The coupling constant J P-P in
the 31P NMR spectrum is now only 20.6 Hz, and the IR
spectrum of 2 shows νC-N at 2108 cm-1. The 13C NMR
spectrum shows the CtN π-coordinated to nickel at δ
138.1 (dd, J ) 80.5, 30.2 Hz). Crystals of 2 were isolated
at room temperature, and a single-crystal X-ray struc-
ture showed the compound to be the C-C cleavage
product (dippe)Ni(Ph)(CN) (Figure 2).8 The C7-N1
distance is only 1.148(3) Å, and the C1-Ni-C7 bond
angle is 89.6(1)°. Note that the phenyl group now rotates
to be perpendicular to the square plane of the complex.
Interestingly, the formation of 2 from 1 did not go to
completion. This observation suggested that perhaps the
reaction was reversible and equilibrium had been
reached (eq 2). Indeed, when isolated crystals of pure 2
Ack n ow led gm en t is made to the U.S. Department
of Energy, Grant No. FG02-86ER13569, to CONACYT,
and to DEGAPA-UNAM for their support of this work.
Su p p or tin g In for m a tion Ava ila ble: Tables giving crys-
tallographic data, intramolecular distances and angles, and
positional and thermal parameters for 1 and 2. This material
OM0008474
(9) For the cleavage of C-CN bonds, see: Abba, M.; Yamamoto, T.
J . Organomet. Chem. 1997, 532, 267. Favero, G.; Movillo, A.; Turco,
A. J . Organomet. Chem. 1983, 241, 251. Morvillo, A.; Turco, A. J .
Organomet. Chem. 1981, 208, 103. Parshall, G. W. J . Am. Chem. Soc.
1974, 96, 2360. Churchill, D.; Shin, J . H.; Hascall, T.; Hahn, J . M.;
Bridgewater, B. M.; Parkin, G. Organometallics 1999, 18, 2403.
Gerlach, D. H.; Kane, A. R.; Parshall, G. W.; J esson, J . P.; Muetterties,
E. L. J . Am. Chem. Soc. 1971, 93, 3543. Burmeister, J . L.; Edwards,
L. M. J . Chem. Soc. A 1971, 1663.
(10) For the formation of C-CN bonds, see: Favero, G.; Gaddi, M.;
Morvillo, A.; Turco, A. J . Organomet. Chem. 1978, 149, 395. Cassar,
L. J . Organomet. Chem. 1973, 54, C57. Tsuji, Y.; Kusui, T.; Kojima,
T.; Sugiura, Y.; Yamada, N.; Tanaka, S.; Ebihara, M.; Kawamura, T.
Organometallics 1998, 17, 4835. Luo, F.-H.; Chu, C.-I.; Cheng, C.-H.
Organometallics 1998, 17, 1025. Huang, J .; Haar, C. M.; Nolan, S. P.;
Marcone, J . E.; Moloy, K. G. Organometallics 1999, 18, 297. Marcone,
J . E.; Moloy, K. G. J . Am. Chem. Soc. 1998, 120, 8527.
(11) Calculated using ∆Hf data from: Afeefy, H. Y.; Liebman, J . F.;
Stein, S. E. Neutral Thermochemical Data. In NIST Chemistry
WebBook; NIST Standard Reference Database 69; Mallard, W. G.,
Linstrom, P. J ., Eds.; National Institute of Standards and Technol-
(12) For η2-nitriles, see: Barrera, J .; Sabat, M.; Harman, W. D. J .
Am. Chem. Soc. 1991, 113, 8178. Chetcuti, P. A.; Knobler, C. B.;
Hawthorne, M. F. Organometallics 1988, 7, 650. Chetcuti, P. A.;
Knobler, C. B.; Hawthorne, M. F. Organometallics 1986, 5, 1913.
Zecchin, S.; Zotti, G.; Pilloni, G. Inorg. Chim. Acta 1979, 33, L117.
Storhoff, B.; Infante, A. J . Inorg. Chem. 1974, 13, 3043. Payne, D. H.;
Frye, H. Inorg. Nucl. Chem. Lett. 1973, 9. 505. Bland, W. J .; Kemmitt,
R. D. W.; Moore, R. D. J . Chem. Soc., Dalton Trans. 1973, 1292.
Krogmann, K.; Mattes, R. Angew. Chem., Int. Ed. Engl. 1966, 5, 1046.
Wright, T. C.; Wilkinson, G.; Motevalli, M.; Hursthouse, M. B. J . Chem.
Soc., Dalton Trans. 1986, 2017.
were redissolved in THF-d8, 1 was seen to be regener-
ated at the expense of 2. The equilibrium constant Keq
was found to be ∼1 at 91 °C. The ratio of 1 to 2 was
found to vary with temperature, and determination of
(7) For 2: 1H NMR (THF-d8) δ 0.92 (dd, J ) 14.7, 7.2 Hz, 6 H), 1.14
(dd, J ) 13.7, 7.1 Hz, 6 H), 1.27 (dd, J ) 13.3, 6.8 Hz, 6 H), 1.45 (dd,
J ) 15.7, 7.2 Hz, 6 H), 1.69-1.89 (m, 4 H), 2.06-2.14 (m, 2 H), 2.37-
2.43 (m, 2 H), 6.67 (t, J ) 7.1 Hz, 1 H), 6.87 (pt, J ) 7.1 Hz, 2 H), 7.34
(pt, J ) 5.6 Hz, 2 H); 31P NMR (THF-d8) δ 71.2 (d, J ) 20.6 Hz), 81.7
(d, J ) 20.6 Hz).
(8) Crystal data for the X-ray structural determination of 2: C21H37
-
NP2Ni, Mr ) 424.17, orthorhombic, a ) 15.9459(6) Å, b ) 14.2501(6)
Å, c ) 19.9039(8) Å, V ) 4522.8(3) Å3, T ) 193 K, space group Pbca
(No. 61), Z ) 8, µ(Mo KR) ) 1.004 mm-1, 19 318 reflections measured,
3253 unique (Rint ) 0.0409), which were used in calculations. The final
wR2(F2) value was 0.0675 (R1 ) 0.0450, all data).