2392
E. Tokuoka et al. / Tetrahedron: Asymmetry 16 (2005) 2391–2392
Table 1. Asymmetric ring opening of meso-epoxide catalyzed by chiral phosphine oxide (S)-BINAPO
a
Yield (%)
b
ee (%) (confgn)
c
25
½aꢁD
+19.7 (c 1.0, EtOH)
Entry
Epoxide
R = Ph
Time (h)
1
2
3
4
12
1
94
97
95
73
81
81
90 (S,S)
31 (S,S)
34
R = CH
2
OCH
2
Ph
NTsCH
OCH
+1.0 (c 1.0, EtOH)
R, R = –CH
R, R = –CH
2
2
2
–
+1.2 (c 1.0, CHCl
+43.3 (c 1.3, CHCl
+67.3 (c 1.0, CHCl
+42.9 (c 1.0, CHCl
3
)
3
)
3
)
3
)
d
4
2
–
1
39
d
5
R, R = –(CH
R, R = –(CH
2
)
)
4
–
–
1
72
71
50
d
6
2
6
a
b
c
Isolated yields.
Determined by chiral HPLC analysis.
9
Assigned by comparison to the literature values of optical rotations.
Isolated as the 4-nitrobenzoate.
d
In summary, the effectiveness of BINAPO as a catalyst
for the enantioselective ring opening of meso-epoxide
with tetrachlorosilane has been demonstrated. Studies
on the design of chiral phosphine oxides to further
enhance enantioselectivity are currently in progress.
Leighton, J. L.; Carsten, D. H.; Jacobsen, E. N. J. Am.
Chem. Soc. 1995, 117, 5897–5898; (c) Cole, B. M.;
Shimizu, K. D.; Krueger, C. A.; Harrity, J. P. A.;
Snapper, M. L.; Hoveyda, A. H. Angew. Chem. Int. Ed.
Engl. 1996, 35, 1668–1671; (d) Iida, T.; Yamamoto, N.;
Sasai, H.; Shibasaki, M. J. Am. Chem. Soc. 1997, 119,
4
dron Lett. 1998, 39, 9023–9026.
. Denmark, S. E.; Barsanti, P. A.; Wong, K.-T.; Stavenger,
R. A. J. Org. Chem. 1998, 63, 2428–2429.
783–4784; (e) Oguni, N.; Miyagi, Y.; Itoh, K. Tetrahe-
Acknowledgements
9
This work was partly supported by a Grant-in-Aid for
Scientific Research from the Ministry of Education, Sci-
ence, Sports, and Culture of Japan and the SUNBOR
GRANT.
1
0. Tao, B.; Lo, M. M.-C.; Fu, G. C. J. Am. Chem. Soc. 2001,
23, 353–354.
1
1
1. Typical procedure: To a stirred solution of (S)-BINAPO
(16.6 mg, 10 mol %), cis-stilbene oxide (50 mg) and diiso-
propylethylamine (0.065 mL, 1.5 equiv) in dichlorometh-
ane (1 mL) was added l M tetrachlorosilane in
dichloromethane (0.38 mL, 1.5 equiv) at ꢀ78 ꢁC under
an argon atmosphere. The mixture was stirred at the same
temperature for 4 h. After quenching the reaction with
aqueous satd sodium bicarbonate (2 mL), the aqueous
layer was treated with aqueous potassium fluoride/potas-
sium dihydrogenphosphate and extracted with ethyl ace-
tate (30 mL · 3). The organic layer was washed with brine
(20 mL), dried over sodium sulfate and concentrated. The
crude material was purified by column chromatography
(silica gel, 5 g, hexane–AcOEt = 10:1) to give 2-chloro-1,2-
diphenylethanol (56 mg, 94%). HPLC (AD-H, hexane–2-
References
1
. (a) Dalko, P. I.; Moisan, L. Angew. Chem. Int. Ed. 2001,
0, 3726–3748; (b) Benaglia, M.; Puglisi, A.; Cozzi, F.
4
Chem. Rev. 2003, 103, 3401–3430; (c) ÔSpecial Issue:
Asymmetric OrganocatalysisÕ, Acc. Chem. Res. 2004, 37,
487–631.
2
3
. Grushin, V. V. Chem. Rev. 2004, 104, 1629–1662.
. Bis(phosphine oxide)–Fe complex: (a) Matsukawa, S.;
Sugama, H.; Imamoto, T. Tetrahedron Lett. 2000, 41,
6
461–6465; Bis(phosphine oxide)–Sm complex: (b)
Mikami, K.; Yamaoka, M. Tetrahedron Lett. 1998, 39,
501–4504, For hybrid phosphine oxide ligand, see Ref. 2.
propanol = 29:1): t
(1S,2S)-(+)-isomer, 24.0 min (95%).
(1R,2R)-(ꢀ)-isomer, 22.0 min (5%);
R
4
4
5
6
. Ogawa, C.; Sugiura, M.; Kobayashi, S. Angew. Chem., Int.
Ed. 2004, 43, 6491–6493.
. Nakajima, M.; Kotani, S.; Ishizuka, T.; Hashimoto, S.
Tetrahedron Lett. 2005, 46, 157–159.
. (a) Nakajima, M.; Saito, M.; Shiro, M.; Hashimoto, S. J.
Am. Chem. Soc. 1998, 120, 6419–6420; (b) Nakajima, M.;
Saito, M.; Hashimoto, S. Chem. Pharm. Bull. 2000, 48,
12. 1.5 equiv of diisopropylethylamine was sufficient for
achieving optimum chemical and optical yields. It is
reasonable to assume that diisopropylethylamine traps the
hydrogen chloride produced through the adventitious
hydrolysis of tetrachlorosilane which reacts directly with
the epoxide to form a chlorohydrin in a nonstereoselective
process.
3
06–307; (c) Nakajima, M.; Saito, M.; Hashimoto, S.
13. The use of trichloromethylsilane as a chloride ion source
gave the racemic chlorohydrin in 84% yield, while chlo-
rotrimethylsilane gave the product in 13% yield.
14. Dichloromethane was found to be the solvent of choice
(propionitrile: 83% yield, 74% ee; toluene: 70% yield, 25%
ee; THF: 56% yield, 90% ee). A reaction in THF gave 2-(4-
chlorobutoxy)-1,2-diphenylethanol in 29% yield as a by-
product.
Tetrahedron: Asymmetry 2002, 13, 2449–2452; (d) Naka-
jima, M.; Saito, M.; Uemura, M.; Hashimoto, S. Tetra-
hedron Lett. 2002, 43, 8827–8829; (e) Nakajima, M.;
Yokota, T.; Saito, M.; Hashimoto, S. Tetrahedron Lett.
2004, 45, 61–64.
7
8
. For a review, see: (a) Hodgson, D. M.; Gibbs, A. R.; Lee,
G. P. Tetrahedron 1996, 52, 14361–14384; (b) Jacobsen, E.
N. Acc. Chem. Res. 2000, 33, 421–431.
. For recent successful approaches, see: (a) Nugent, W. A. J.
Am. Chem. Soc. 1992, 114, 2768–2769; (b) Martinez, L. E.;
15. Derivatives of BINAPO gave lower selectivities than
BINAPO itself (p-Tol-BINAPO: 96% yield, 82% ee;
m-Xyl-BINAPO: 98% yield, 30% ee).