Enantioselective Synthesis of ꢀ-Aryl-γ-amino
Acid Derivatives via Cu-Catalyzed Asymmetric
γ-amino acid derivatives have been reported in the past few
years, the search for new and efficient catalytic asymmetric
synthetic methods remains a significant challenge.
3
1
,4-Reductions of γ-Phthalimido-Substituted
r,ꢀ-Unsaturated Carboxylic Acid Esters
Very recently, we have reported a Rh-catalyzed asymmetric
hydrogenation of γ-phthalimido-R,ꢀ-unsaturated carboxylic acid
esters, in which a variety of chiral ꢀ-aryl-γ-amino acid deriva-
†
,‡
,‡
†,‡
Jun Deng, Xiang-Ping Hu,* Jia-Di Huang,
†,‡
4
tives can be obtained with good enantioselectivities. However,
†
,‡
†,‡
Sai-Bo Yu, Dao-Yong Wang, Zheng-Chao Duan, and
,
†,‡
this method has the disadvantages of demanding reaction
conditions (60 atm of H2 pressure), the use of the expensive
Rh catalyst, and the relatively high catalyst loadings (1 mol
%). These shortcomings prompted us to seek for an alternative
approach to synthesize chiral ꢀ-substituted γ-amino acids.
Zhuo Zheng*
Dalian Institute of Chemical Physics, Chinese Academy of
Sciences, Dalian 116023, China, and Graduate School of
Chinese Academy of Sciences, Beijing 100039, China
In the past decade, copper hydride (Cu-H) with chiral ligands
has emerged as a powerful reagent for effecting asymmetric
zhengz@dicp.ac.cn; xiangping@dicp.ac.cn
5
reductions of various R,ꢀ-unsaturated compounds such as
ReceiVed April 10, 2008
6
7
8
enones, R,ꢀ-unsaturated esters, nitroalkenes, R,ꢀ-unsaturated
9
10
sulfones, and R,ꢀ-unsaturated nitriles. Since the copper salts
is very cheap in comparison with the Rh catalyst precursor, we
therefore envisioned that an asymmetric 1,4-reduction of γ-ph-
thalimido-R,ꢀ-unsaturated esters via copper hydride catalysis
should be an attractive alternative to these chiral compounds.
Herein, we report our studies on this new strategy for construct-
ing chiral ꢀ-aryl substituted γ-amino acid derivatives.
We started our studies on the catalytic asymmetric conjugate
reduction of ethyl (Z)-4-phthalimido-3-phenylbut-2-enoate (1a)
by surveying a number of copper salts, silanes, diphosphine
ligands, and solvents in order to identify a suitable catalyst
A series of chiral ꢀ-aryl-substituted γ-amino butyric acid
derivatives were synthesized in good enantioselectivities via
the Cu-catalyzed asymmetric conjugate reduction of γ-ph-
thalimido-R,ꢀ-unsaturated carboxylic acid esters using
(
2) (a) Olpe, H.-R.; Demieville, H.; Baltzer, V.; Bencze, W. L.; Koella, W. P.;
Wolf, P.; Haas, H. L. Eur. J. Pharmacol. 1978, 52, 133–136. (b) Sytinsky, I. A.;
Soldatenkov, A. T. Prog. Neurobiol. 1978, 10, 89–133. (c) Allan, R. D.; Bates,
M. C.; Drew, C. A.; Duke, R. K.; Hambley, T. W.; Johnston, G. A. R.; Mewett,
K. N.; Spence, I. Tetrahedron 1990, 46, 2511–2524. (d) Ong, J.; Kerr, D. I. S.;
Doolette, D. J.; Duke, R. K.; Mewett, K. N.; Allen, R. D.; Johnston, G. A. R.
Eur. J. Pharmacol. 1993, 233, 169–172. (e) Costantino, G.; Macchiarulo, A.;
Guadix, A. E.; Pellicciari, R. J. Med. Chem. 2001, 44, 1827–1832. (f) Belliotti,
T. R.; Capiris, T.; Ekhato, V.; Kinsora, J. J.; Field, M. J.; Hrffner, T. G.; Melzer,
L. T.; Schwarz, J. B.; Taylor, C. P.; Thorpe, A. J.; Vartanian, M. G.; Wise,
L. D.; Zhi-Su, T.; Weber, M. L.; Wustrow, D. J. J. Med. Chem. 2005, 48, 2294–
Cu(OAc)
2
2
·H O as a catalyst precursor, (S)-BINAP as a
ligand, PMHS as a hydride source, and t-BuOH as an
additive. The methodology has been applied successfully to
the enantioselective synthesis of a chiral pharmaceutical,
(
R)-baclofen.
2
307.
(
3) For a review, see: Ord oˇ nˇ ez, M.; Cativiela, C. Tetrahedron: Asymmetry
2
007, 18, 3–99.
(
4) Deng, J.; Duan, Z.-C.; Huang, J.-D.; Hu, X.-P.; Wang, D.-Y.; Yu, S.-B.;
γ-Amino butyric acid (GABA) is an important central nervous
Xu, X.-F.; Zheng, Z. Org. Lett. 2007, 9, 4825–4828.
(5) For a review, see: Rendler, S.; Oestreich, M. Angew. Chem., Int. Ed.
2007, 46, 498–504.
system neurotransmitter and has a profound impact on many
1
important biological functions. Hence, many GABA analogues,
(6) (a) Moritani, Y.; Appella, D. H.; Jurkauskas, V.; Buchwald, S. L. J. Am.
particularly those bearing substituents at the ꢀ-position such as
-amino-3-(4-chlorophenyl)butyric acid (baclofen), have been
Chem. Soc. 2000, 122, 6797–6798. (b) Jurkauskas, V.; Buchwald, S. L. J. Am.
Chem. Soc. 2002, 124, 2892–2893. (c) Lipshutz, B. H.; Servesko, J. M. Angew.
Chem., Int. Ed. 2003, 42, 4789–4792. (d) Lipshutz, B. H.; Servesko, J. M.;
Petersen, T. B.; Papa, P. P.; Lover, A. A. Org. Lett. 2004, 6, 1273–1275. (e)
Lipshutz, B. H.; Frieman, B. A.; Tomaso, Jr., A. E. Angew. Chem., Int. Ed 2006,
4
well explored as medicines to treat various diseases associated
2
with GABA receptors. Studies have disclosed that the biological
4
5, 1259–1264.
activities of these GABA analogues resides mainly in the single
enantiomer, and therefore the development of an enantioselective
method for the synthesis of these compounds is highly desirable.
Although some catalytic asymmetric syntheses of ꢀ-substituted
(
7) (a) Appella, D. H.; Moritani, Y.; Shintani, R.; Ferreira, E. M.; Buchwald,
S. L. J. Am. Chem. Soc. 1999, 121, 9473–9474. (b) Hughes, G.; Kimura, M.;
Buchwald, S. L. J. Am. Chem. Soc. 2003, 125, 11253–11258. (c) Lipshutz, B. H.;
Servesko, J. M.; Taft, B. R. J. Am. Chem. Soc. 2004, 126, 8352–8353. (d) Rainka,
M. P.; Aye, Y.; Buchwald, S. L. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 5821–
5
823. (e) Rainka, M. P.; Milne, J. E.; Buchwald, S. L. Angew. Chem., Int. Ed.
†
Dalian Institute of Chemical Physics.
Graduate School of Chinese Academy of Sciences.
2005, 44, 6177–6180. (f) Lipshutz, B. H.; Tanaka, N.; Taft, B. R.; Lee, C.-T.
Org. Lett. 2006, 8, 1963–1966.
‡
(1) (a) Silverman, R. B.; Andruszkiewicz, R.; Nanavati, S. M.; Taylor, C. P.;
(8) (a) Czekelius, C.; Carreira, E. M. Angew. Chem., Int. Ed. 2003, 42, 4793–
4795. (b) Czekelius, C.; Carreira, E. M. Org. Lett. 2004, 6, 4575–4577. (c)
Czekelius, C.; Carreira, E. M. Org. Process Res. DeV. 2007, 11, 633–636.
(9) Llamas, T.; Array a´ s, R. G.; Carretero, J. C. Angew. Chem., Int. Ed. 2007,
46, 3329–3332.
Vartanian, M. G. J. Med. Chem. 1991, 34, 2295–2298. (b) Yuen, P. W.; Kanter,
G. D.; Taylor, C. P.; Vertanian, M. G. Bioorg. Med. Chem. Lett. 1994, 4, 823–
26. (c) Bryans, J. S.; Davies, N.; Gee, N. S.; Dissanayake, V. U. K.; Ratcliffe,
8
G. S J. Med. Chem. 1998, 41, 1838–1845. (d) Moglioni, A. G.; Brousse, B. N.;
A´ lvarez-Larena, A.; Moltrasio, G. Y.; Ortu n˜ o, R. M. Tetrahedron: Asymmetry
(10) (a) Lee, D.; Kim, D.; Yun, J. Angew. Chem., Int. Ed. 2006, 45, 2785–
2787. (b) Lee, D.; Yang, Y.; Yun, J. Org. Lett. 2007, 9, 2749–2751.
2
002, 13, 451–454.
6
022 J. Org. Chem. 2008, 73, 6022–6024
10.1021/jo800794p CCC: $40.75 2008 American Chemical Society
Published on Web 07/03/2008