4
Tetrahedron Letters
1a follows a different route which likely involves cationic rather than radical species as an intermediate. The optimized method was
successfully applied to the synthesis of other bromopyridines, including previously unreported 2-bromo- and 4-bromo-3-
cyclopropylpyridines 2c, 2e.
Supplementary data
References and notes
1.
2.
3.
McElroy, W. T.; Li, G.; Ho, G. D.; Tan, Zh.; Paliwal, S.; Seganish, W. M.; Tulshian, D.; Lampe, J.; Methot, J. L.; Zhou, H.; Altman, M. D.; Zhu,
L. Patent WO2012/129258, 2012.
McElroy, W. T.; Tan, Zh.; Ho, G.; Paliwal, S.; Li, G.; Seganish, W. M.; Tulshian, D.; Tata, J.; Fischmann, Th. O.; Sondey, Ch.; Bian, H.; Bober,
L.; Jackson, J.; Garlisi, Ch. G.; Devito, K.; Fossetta, J.; Lundell, D.; Niu, X. Med. Chem. Lett. 2015, 6, 677–682.
Orr, S. T. M.; Beveridge, R.; Bhattacharya, S. K.; Cameron, K. O.; Coffey, S.; Fernando, D.; Hepworth, D.; Jackson, M. V.; Khot, V.; Kosa, R.;
Lapham, K.; Loria, P. M.; McClure, K. F.; Patel, J.; Rose, C.; Saenz, J.; Stock, I. A.; Storer, G.; Von Volkenburg, M.; Vrieze, D.; Wang, G.;
Xiao, J.; Zhang, Y. Med. Chem. Lett. 2015, 6, 156–161.
4.
5.
6.
Lockman, J.; Ni, Ch.; Park, J. H.; Park, M.; Shao, B.; Tafesse, L.; Yao, J.; Youngman, M. A. Patent WO2014/135955, 2014.
Ni, Ch.; Park, J. H.; Shao, B.; Zhou, X. Patent WO2015/94443, 2015.
Bissantz, C.; Grether, U.; Hebeisen, P.; Kimbara, A.; Liu, Q.; Nettekoven, M.; Prunotto, M.; Roever, S.; Rogers-Evans, M.; Schulz-Gasch, T.;
Ullmer, Ch.; Wang, Zh.; Yang, W. Patent US2012/316147, 2012.
7.
8.
9.
Bissantz, C.; Grether, U.; Hebeisen, P.; Kimbara, A.; Liu, Q.; Nettekoven, M.; Prunotto, M.; Roever, S.; Rogers-Evans, M.; Schulz-Gasch, T.;
Ullmer, Ch.; Wang, Zh.; Yang, W. Patent WO2012/168350, 2012.
Brodney, M. A.; Davoren, J. E.; Dounay, A. B.; Efremov, I.; Gray, D. L. F.; Green, M. E.; Henderson, J. L.; Lee, Ch.; Mente, S. R.; O'Neil, S. V.;
Rogers, B. N.; Zhang, L. Patent WO2014/207601 A1, 2014.
Konetzki, I.; Craan, T.; Jakob, F.; Nardi, A.; Hesslinger, Ch.; Welbers, A. Patent US2016/24053, 2016.
10. Grether, U.; Kimbara, A.; Nettekoven, M.; Ricklin, F.; Roever, S.; Rogers-Evans, M.; Rombach, D.; Schultz-Gasch, T.; Westphal, M. Patent
WO2014/86805, 2014.
11. Gavelle, O.; Grether, U.; Kimbara, A.; Nettekoven, M.; Roever, S.; Rogers-Evans, M.; Rombach, D.; Schultz-Gasch, T. Patent WO2014/154612,
2014.
12. Ogino, M.; Ikeda, Z.; Fujimoto, J.; Ohba, Y.; Ishii, N.; Fujimoto, T.; Oda, T.; Taya, N.; Yamashita, T.; Matsunaga, N. Patent EP2889291, 2015.
13. Kawaguchi, T.; Watatani, K.; Fusegi, K.; Bohno, M.; Asanuma, H.; Kuroda, Sh.; Imai, Y.; Chonan, T.; Sato, N.; Tokita, Sh.; Sasako, Sh.; Okada,
T.; Hayashi, K.; Itoh, Sh.; Saito, N.; Jibiki, R.; Ishijama, S.; Ota, H. Patent US2011/237791, 2011.
14. Cai, Zh.-W.; Zhou, D.; Lin, Y.; Chen, P. Patent US2013/158031, 2013.
15. Anderssen, B. M.; Anthony, N. J.; Miller, T. A. Patent WO2014/74422, 2014.
16. Malhotra, S.; Seng, P. S.; Koenig, S. G.; Deese, A. J.; Ford, K. A. Org. Lett. 2013, 15, 3698–3701.
17. Brooks, H. B.; Crich, J. Z.; Henry, J. R.; Li, H.-Y.; Sawyer, J. S.; Wang, Y. Patent US2010/0081641, 2010.
18. Cai, Z. W.; Zhou, D.; Lin, Y.; Chen, P. Patent US2013/0158031, 2013.
19. Britton, T. C.; Dehlinger, V.; Fivush, A. M.; Hollinshead, S. P.; Vokits, B. P. Patent US2009/0253750, 2009.
20. Krecmerova, M.; Holy, A.; Masojidkova, M. Coll. Czech. Chem. Commun. 1995, 60, 670–680.
21. Ortega Munoz, A.; Fyfe, M. C. T; Martinell Pedemonte, M.; Tirapu Fernandez de la Cuesta, I.; Estriarte-Martinez, M. Patent WO2012/013728,
2012.
22. Das, S.; Harde, R. L.; Shelke, D. E.; Khairatkar-Joshi, N.; Bajpai, M.; Sapalya, R. S.; Surve, H. V.; Gudi, G. S.; Pattem, R.; Behera, D. B.;
Jadhav, S. B.; Thomas, A. Bioorg. Med. Chem. Lett. 2014, 24, 2073–2078.
23. McArthur, S. G.; Goetschi, E.; Palmer, W. S.; Wichmann, J.; Woltering, T. J. Patent US2006/0217387, 2006.
24. Hodgson, H. H. Chem. Rev. 1947, 40, 251–277.
25. Doyle, M. P.; Siegfried, B.; Dellaria Jr., J. F. J. Org. Chem. 1977, 42, 2426–2431.
26. da Silva, D.; Samadi, A.; Chioua, M.; Carreiras, M. C.; Marco-Contelles, J. Synthesis 2010, 2725–2730.
27. Oae, S.; Shinhama, K.; Kim, Y. H. Bull. Chem. Soc. Jpn. 1980, 53, 1065–1069.
28. Zhang, M.; Cui, X.; Chen, X.; Wang, L.; Li, J.; Wu, Y.; Hou, L.; Wu, Y. Tetrahedron 2012, 68, 900–905.
29. General procedure for the Suzuki coupling of bromopyridines with cyclopropylboronic acid. The corresponding bromopyridine (1 mmol)
and cyclopropylboronic acid (1.3 mmol) were dissolved in toluene (10 mL) under an argon atmosphere. Then, anhydrous K3PO4 (3 mmol) and
water (1 mL) were added and reaction mixture stirred for 10 min under an argon flow. Tricyclohexylphosphine (10 mol%) and Pd(OAc)2 (5
mol%) were added and reaction mixture stirred at reflux until GC-MS analysis of the reaction mixture indicated full consumption of the starting
material. The reaction mixture was cooled to room temperature, filtered through a pad of Celite, diluted with EtOAc (25 mL), washed with water
(3 × 20 mL), dried (Na2SO4) and evaporated to dryness. The crude product was purified by column chromatography on silica gel.
30. Daasbjerg, K.; Lund, H. Acta Chem. Scand. 1992, 46, 157–162.
31. General procedure for preparation of halogenopyridines 2, 3. Aminopyridine (1 mmol) and corresponding Cu(II) halide (0.5 mmol) were
dissolved dibromo(chloro)methane (6 mL) at 25 °C under an argon atmosphere. Alkyl nitrite (1.1 mmol) was added dropwise over 5 min and
reaction mixture stirred at the appropriate temperature (Table 1 and 2) until GC-MS analysis of the reaction mixture indicated full consumption of
the starting material. The reaction mixture was poured into 1 N NaOH (20 mL), stirred for 1 h and extracted with CH2Cl2 (3 × 20 mL). The
combined organic extracts were dried (Na2SO4) and evaporated to dryness. The crude product was purified by column chromatography on silica
gel.