ORGANIC
LETTERS
2
005
Vol. 7, No. 23
329-5330
ZnCl -Mediated Stereoselective Addition
of Terminal Alkynes to
2
5
D-(+)-Mannofuranosyl Nitrones
Dana Topi c´ , Patrick Aschwanden, Roger F a1 ssler, and Erick M. Carreira*
Laboratorium f u¨ r Organische Chemie, ETH H o¨ nggerberg,
CH-8093 Z u¨ rich, Switzerland
Received September 26, 2005
ABSTRACT
2 3
An optimized process for the addition of terminal alkynes to chiral nitrones using ZnCl and NEt in toluene is reported. The new reaction
protocol is facile to perform and cost-effective. The resulting optically active propargyl N-hydroxylamines are isolated in good to excellent
yield and high diastereoselectivity.
Optically active propargyl N-hydroxylamines can serve as
versatile building blocks for asymmetric synthesis. They are
moved by treating the products with N-hydroxylamine
1
hydrochloride, a process allowing reisolation and reuse of
5
readily converted to amines and are amenable to further
synthetic elaborations, such as cyclization to furnish 2,3-
the auxiliary.
Our continuing interest in the chemistry of metal alky-
2
3
,6
dihydroisoxazoles. Recently, we reported the first general
nylides prepared in situ from terminal alkynes led us to
search for alternative sources of Zn(II). A preliminary
process for the preparation of optically active propargyl
3
N-hydroxylamines. The method prescribes the use of chiral
2
screening revealed that rigorously dried ZnCl is capable of
inducing the addition of terminal alkynes to N-benzylnitrones.
However, unexpectedly, most of the product propargyl
4
nitrones with a broad range of terminal acetylenes in the
2 3
presence of Zn(OTf) , NEt , and N,N-dimethylethanolamine.
After addition, the chiral controlling group is easily re-
(
5) Lantos, I.; Flisak, J.; Liu, L.; Matsuoka, R.; Mendelson, W.;
(
1) For a review, see: (a) Aschwanden, P.; Carreira, E. M. Addition of
Stevenson, D.; Tubman, K.; Tucker, L.; Zhang, W. Y.; Adams, J.; Sorenson,
M.; Garigipati, R.; Erhardt, K.; Ross, S. J. Org. Chem. 1997, 62, 5385.
(6) (a) Frantz, D. E.; F a¨ ssler, R.; Carreira, E. M. J. Am. Chem. Soc. 1999,
121, 11245. (b) Frantz, D. E.; F a¨ ssler, R.; Carreira, E. M. J. Am. Chem.
Soc. 2000, 122, 1806. (c) Boyall, D.; Lopez, F.; Sasaki, H.; Carreira, E. M.
Org. Lett. 2000, 2, 4233. (d) Sasaki, H.; Boyall, D.; Carreira, E. M. Helv.
Chim. Acta 2001, 84, 964. (e) El-Sayed, E.; Anand, N. K.; Carreira, E. M.
Org. Lett. 2001, 3, 3017. (f) Anand, N. K.; Carreira, E. M. J. Am. Chem.
Soc. 2001, 123, 9687. (g) Boyall, D.; Frantz, D. E.; Carreira, E. M. Org.
Lett. 2002, 4, 2605. (h) Diez, R. S.; Adger, B.; Carreira, E. M. Tetrahedron
2002, 58, 8341. (i) Reber, S.; Kn o¨ pfel, T. F.; Carreira, E. M. Tetrahedron
2003, 59, 6813. (j) Kn o¨ pfel, T. F.; Carreira, E. M. J. Am. Chem. Soc. 2003,
125, 6054. (k) Fischer, C.; Carreira, E. M. Organic Lett. 2004, 6, 1497. (l)
Kn o¨ pfel, T. F.; Aschwanden, P.; Ichikawa, T.; Watanabe, T.; Carreira, E.
M. Angew. Chem., Int. Ed. 2004, 43, 5971.
Terminal Acetylides to CdO and CdN Electrophiles. In Acetylene
Chemistry: Chemistry, Biology and Material Science; Diederich, F., Stang,
P. J., Tykwinski, R. R., Eds.; Wiley: Weinheim, 2005.
(
2) Aschwanden, P.; Frantz, D. E.; Carreira, E. M. Org. Lett. 2000, 2,
331.
3) F a¨ ssler, R.; Frantz, D. E.; Oetiker, J.; Carreira, E. M. Angew. Chem.,
Int. Ed. 2002, 41, 3054.
4) (a) Vasella, A. HelV. Chim. Acta 1977, 60, 1273. (b) Basha, A.; Henry,
R.; McLaughlin, M. A.; Ratajczyk, J. D.; Wittenberger, S. J. J. Org. Chem.
994, 59, 6103. (c) For a detailed review on the use of monosaccharides as
2
(
(
1
chiral auxiliaries for asymmetric synthesis, see: Hale, K. J. Monosaccha-
rides: Use in Synthesis as Chiral Templates. In Second Supplements to the
nd Editon of Rodd’s Chemistry of Carbon Compounds; Sainsbury, M.,
Ed.; Elsevier: Amsterdam, 1993; Vol. IE/F/G, Chapter 23b, p 273.
2
1
0.1021/ol052331s CCC: $30.25
© 2005 American Chemical Society
Published on Web 10/21/2005