Letters
J ournal of Medicinal Chemistry, 2002, Vol. 45, No. 21 4597
Chem. Lett. 1998, 8, 2715-2718. (b) Belliotti, T. R.; Kesten, S.
R.; Rubin, J . R.; Wustrow, D. J .; Georgic, L. M.; Zoski, K. T.;
Akunne, H. C.; Wise, L. D. Novel cyclohexyl amides as potent
and selective D3 dopamine receptor ligands. Bioorg. Med. Chem.
Lett. 1997, 7, 2403-2408.
ites reported yet. The intrinsic activities determined
within the mitogenesis assays were also highly structure-
dependent. The benzothiophene 3c (FAUC 346) and its
oxa analogue 3a proved partial agonist character with
EC50 values at 0.36 and 1.5 nM, respectively. On the
other hand, exchange of the methoxyphenyl group by a
dichlorophenyl moiety or introduction of the tellurium
into the heteroarene led to a complete loss of ligand
efficacy.
In conclusion, highly selective dopamine D3 partial
agonists and also complete antagonists including the
pyrazolo[1,5-a]pyridine FAUC 329 (1c) and the ben-
zothiophenes FAUC 346 (3c) and FAUC 365 (3d ) were
discovered by a rational and interactive SAR sequence.
Whereas the antagonists are of potential interest for the
treatment of schizophrenia, the partial agonists could
be exploited for the therapy of psychostimulant addic-
tion.
(6) For very recent examples, see (a) Lo¨ber, S.; Hu¨bner, H.; Utz,
W.; Gmeiner, P. Rationally Based Efficacy Tuning of Selective
Dopamine D4 Receptor Ligands Leading to the Complete
Antagonist 2-[4-(4-Chlorophenyl)piperazin-1-ylmethyl]pyrazolo-
[1,5-a]pyridine (FAUC 213). J . Med. Chem. 2001, 44, 2691-2694.
(b) Lanig, H.; Utz, W.; Gmeiner, P. Comparative Molecular Field
Analysis of Dopamine D4 Receptor Antagonists Including 3-[4-
(4-Chlorophenyl)piperazin-1-ylmethyl]pyrazolo[1,5-a]pyridine
(FAUC 113), 3-[4-(4-Chlorophenyl)piperazin-1-ylmethyl]-1H-pyr-
rolo[2,3-b]pyridine (L-745,870), and Clozapine. J . Med. Chem.
2001, 44, 1151-1157.
(7) Go¨sl, R.; Meuwsen, A. 1-Aminopyridinium iodide. Org. Synth.
1963, 43, 1-3.
(8) Gmeiner, P.; Sommer, J . Azaindol-Derivate I: Asymmetrische
Synthese einer neuen R-Aminosa¨ure. Arch. Pharm. (Weinheim)
1988, 321, 505-507.
(9) Anderson, P. L.; Hasak, J . P.; Kahle, A. D.; Paolella, N. A.;
Shapiro, M. J . 1,3-Dipolar addition of pyridine N-imine to
acetylenes and the use of 13-C NMR in several structural
assignments. J . Heterocycl. Chem. 1981, 18, 1149-1152.
(10) Glennon, R. A.; Naiman, N. A.; Lyon, R. A.; Titeler, M. Arylpip-
erazine Derivatives as High-Affinity 5-HT1A Serotonin Ligands.
J . Med. Chem. 1988, 31, 1968-1971.
(11) Lo¨ber, S.; Aboul-Fadl, T.; Hu¨bner, H.; Gmeiner, P. Di- and
Trisubstituted Pyrazolo[1,5-a]pyridine Derivatives: Synthesis,
Dopamine Receptor Binding and Ligand Efficacy. Bioorg. Med.
Chem. Lett. 2002, 12, 633-636.
(12) Corey, E. J .; Gilman, N. W.; Ganem, B. E. New Methods for the
Oxidation of Aldehydes to Carboxylic Acids and Esters. J . Am.
Chem. Soc. 1968, 90, 5616-5617.
(13) (a) Carpino, L. A. 1-Hydroxy-7-azabenzotriazole. An Efficient
Peptide Coupling Additive. J . Am. Chem. Soc. 1993, 115, 4397-
4398. (b) Kienho¨fer, A. 1-Hydroxy-7-azabenzotriazole (HOAt) and
N-[(dimethylamino)-1H-1,2,3-triazolo-[4,5-b]pyridin-1-yl-meth-
ylene]-N-methylmethanaminium hexafluorophosphate N-oxide
(HATU). Synlett 2001, 1811-1812.
(14) Hayes, G.; Biden, T. J .; Selbie, L. A.; Shine J . Structural subtypes
of the dopamine D2 receptor are functionally distinct: expression
of the cloned D2A and D2B subtypes in a heterologous cell line.
Mol. Endocrinol. 1992, 6, 920-926.
(15) Sokoloff, P.; Andrieux, M.; Besanc¸on, R.; Pilon, C.; Martres, M.-
P.; Giros, B.; Schwartz, J .-C. Pharmacology of human dopamine
D3 receptor expressed in a mammalian cell line: comparison
with D2 receptor. Eur. J . Pharmacol. 1992, 225, 331-337.
(16) Asghari, V.; Sanyal, S.; Buchwaldt, S.; Paterson, A.; J ovanovic,
V.; Van Tol, H. H. M. Modulation of intracellular cyclic AMP
levels by different human dopamine D4 receptor variants. J .
Neurochem. 1995, 65, 1157-1165.
(17) Hu¨bner, H.; Haubmann, C.; Utz, W.; Gmeiner, P. Conjugated
enynes as nonaromatic catechol bioisosteres: synthesis, binding
experiments, and computational studies of novel dopamine
receptor agonists recognizing preferentially the D3 subtype. J .
Med. Chem. 2000, 43, 756-762.
Ack n ow led gm en t. We thank Dr. J .-C. Schwartz
and Dr. P. Sokoloff (INSERM, Paris), Dr. H. H. M. Van
Tol (Clarke Institute of Psychiatry, Toronto), and Dr.
J . Shine (The Garvan Institute of Medical Research,
Sydney) for providing dopamine D3, D4, and D2 recep-
tor-expressing cell lines, respectively. Thanks are also
due to Dr. W. Utz for helpful discussions. This work was
supported by the BMBF and the Fonds der Chemischen
Industrie.
Su p p or tin g In for m a tion Ava ila ble: Complete Experi-
mental Section including details on synthesis, analytical
characterization, and biological studies, as well as a graphical
representation of molecular electrostatic isopotential maps.
This material is available free of charge via the Internet at
http://pubs.acs.org.
Refer en ces
(1) Sokoloff, P.; Giros, B.; Martres, M.-P.; Bouthenet, M.-L.; Schwartz,
J .-C. Molecular cloning and characterization of a novel dopamine
receptor (D3) as a target for neuroleptics. Nature 1990, 347, 146-
151.
(2) (a) Caine, S. B.; Koob, G. F. Modulation of cocaine self-
administration in the rat through D3 dopamine receptors.
Science 1993, 260, 1814-1816. (b) Caine, S. B.; et al. D3 receptor
test in vitro predicts decreased cocaine self-administration in
rats. Neuroreport 1997, 8, 2373-2377. (c) Staley, J . K.; Mash,
D. C. Adaptive increase in D3 dopamine receptors in the brain
reward circuits of human cocaine fatalities. J . Neurosci. 1996,
16, 6100-6106.
(3) Pilla, M.; Perachon, S.; Sautel, F.; Garrido, F.; Mann, A.;
Wermuth, C. G.; Schwartz, J .-C.; Everitt, B. J .; Sokoloff, P.
Selective inhibition of cocaine-seeking behaviour by a partial
dopamine D3 receptor agonist. Nature 1999, 400, 371-375.
(4) Stemp, G.; Ashmeade, T.; Branch, C. L.; Hadley, M. S.; Hunter,
A. J .; J ohnson, C. N.; Nash, D. J .; Thewlis, K. M.; Vong, A. K.
K.; Austin, N. E.; J effrey, P.; Avenell, K. Y.; Boyfield, I.; Hagan,
J . J .; Middlemiss, D. N.; Reavill, C.; Riley, G. J .; Routledge, C.;
Wood, M. Design and synthesis of trans-N-[4-2-(6-cyano-1,2,3,4-
tetrahydroisoquinolin-2-yl)ethyl]cyclohexyl]-4-quinolinecarboxa-
mide (SB-277011): A potent and selective dopamine D3 receptor
antagonist with high oral bioavailability and CNS penetration
in the rat. J . Med. Chem. 2000, 43, 1878-1885 and references
therein.
(18) (a) Mierau, J .; Schneider, F. J .; Ensinger, H. A.; Chio, C. L.;
Lajiness, M. E.; Huff, R. M. Pramipexole binding and activation
of cloned and expressed dopamine D2, D3 and D4 receptors. Eur.
J . Pharmacol. 1995, 290, 29-36. (b) Hu¨bner, H.; Kraxner, J .;
Gmeiner, P. Cyanoindole derivatives as highly selective dopa-
mine D4 receptor partial agonists: solid-phase synthesis, bind-
ing assays, and functional experiments. J . Med. Chem. 2000,
43, 4563-4569.
(19) Chio, C.; Lajiness, M. E.; Huff, R. M. Activation of heterologously
expressed D3 dopamine receptors: comparison with D2 dopa-
mine receptors. Mol. Pharmacol. 1994, 45, 51-60.
(20) Zanati, G.; Gaare, G.; Wolff, M. E. Heterocyclic steroids. 5.
Sulfur, selenium, and tellurium 5R-androstane derivatives and
their 7R-methylated congeners. J . Med. Chem. 1974, 17, 561-563.
(5) (a) Yuan, J .; Chen, X.; Brodbeck, R.; Primus, R.; Braun, J .;
Wasley, J . W. F.; Thurkauf, A. NGB 2904 and NGB 2849: Two
highly selective dopamine D3 receptor antagonists. Bioorg. Med.
J M025558R