J . Org. Chem. 2002, 67, 1657-1662
1657
Efficien t Ru th en iu m -Ca ta lyzed Aer obic Oxid a tion of Alcoh ols
Usin g a Biom im etic Cou p led Ca ta lytic System
Ga´bor Csjernyik,† Alida H. EÄ ll,† Luca Fadini,‡ Benoit Pugin,‡ and J an-E. Ba¨ckvall*,†
Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University,
SE-106 91 Stockholm Sweden, and Catalysis Research, Solvias AG, CH-4002 Basel, Switzerland
jeb@organ.su.se
Received December 14, 2001
Efficient aerobic oxidation of alcohols was developed via a biomimetic catalytic system. The principle
for this aerobic oxidation is reminiscent of biological oxidation of alcohols via the respiratory chain
and involves selective electron/proton transfer. A substrate-selective catalyst (ruthenium complex
1) dehydrogenates the alcohol, and the hydrogens abstracted are transferred to an electron-rich
quinone (4b). The hydroquinone thus formed is continuously reoxidized by air with the aid of an
oxygen-activating Co-salen type complex (6). Most alcohols are oxidized to ketones in high yield
and selectivity within 1-2 h, and the catalytic system tolerates a wide range of O2 concentrations
without being deactivated. Compared to other ruthenium-catalyzed aerobic oxidations this new
catalytic system has high turnover frequency (TOF).
In tr od u ction
catalytic electron-transfer systems for 1,4-oxidations of
conjugated dienes,5 allylic oxidations,5a oxidations of
alcohols,6 and dihydroxylations of olefins7 where either
O2 or H2O2 are used as oxidant.
Oxidation of secondary alcohols is an important process
in living organisms, in particular in animals and aerobic
bacteria.1,2 These oxidations occur under very mild reac-
tion conditions and involve selective electron transfer
processes. The dehydrogenation of the alcohol is usually
carried out by NAD+ to give the ketone and NADH +
H+. The NADH is subsequently reoxidized by molecular
oxygen via the respiratory chain.3 The latter process
involves electron transfer from NADH to ubiquinone (Q)
to give ubiquinol (QH2), and the QH2 formed carries the
electrons to cytochrome c, which as its reduced form
transfers them to O2.
Because of the increased demand of environmentally
benign oxidation processes in organic chemistry, espe-
cially on large-scale synthesis, there is a growing interest
to mimic biological transformations. In the biomimetic
approach one would employ a substrate-selective redox
catalyst for the oxidation (cf. NAD+ in biological alcohol
oxidation) and then transfer the electrons of the reduced
form of the redox catalyst to O2 or H2O2. The latter
process requires electron-transfer mediators (ETMs)
between the substrate-selective redox catalyst and O2 or
H2O2 to proceed under mild conditions. A limited number
of oxidation reactions with such coupled electron-transfer
systems are known in nonbiological systems.4-10 Our own
group has recently designed and developed coupled
A number of methods for metal-catalyzed aerobic
oxidations of alcohols have been developed.6a,b,9-16 There
is a demand to make these reactions more efficient, and
particular emphasis has been put on facilitating electron
transfer from the alcohol to molecular oxygen. We now
describe an efficient aerobic biomimetic catalytic system
for dehydrogenation of alcohols to ketones involving a
(6) (a) Ba¨ckvall, J .-E.; Chowdhury, R. L.; Karlsson, U. J . Chem. Soc.
Chem. Commun. 1991, 473. (b) Wang, G.-Z.; Andreasson, U.; Ba¨ckvall,
J .-E. J . Chem. Soc. Chem. Commun. 1994, 1037. (c) Andreasson, U.;
Wang, G.-Z.; Ba¨ckvall, J .-E. J . Org. Chem. 1994, 59, 1196. (d) Almeida,
M. L. S.; Beller, M.; Wang, G.-Z.; Ba¨ckvall, J .-E. Chem. Eur. J . 1996,
2, 1533.
(7) (a) Bergstad, K.; J onsson, S. Y.; Ba¨ckvall, J .-E. J . Am. Chem.
Soc. 1999, 121, 10424. (b) J onsson, S. Y.; Fa¨rnegårdh, K.; Ba¨ckvall,
J .-E. J . Am. Chem. Soc. 2001, 123, 1365.
(8) (a) Bystro¨m, S. E.; Larsson, E. M.; A° kermark, B. J . Org. Chem.
1990, 55, 5674. (b) Yokota, T.; Sakurai, Y.; Sakaguchi, S.; Ishii, Y.
Tetrahedron Lett. 1997, 38, 3923. (c) Hanyu, A.; Takezawa, E.;
Sakaguchi, S.; Ishii, Y. Tetrahedron Lett. 1998, 39, 5557.
(9) For aerobic oxidation of alcohols involving formal coupled
electron-transfer, see: (a) Marko´, I. E.; Giles, P. R.; Tsukazaki, M.;
Brown, S. M.; Urch, C. J . Science 1996, 274, 2044. (b) Marko´, I. E.;
Giles, P. R.; Tsukazaki, M.; Chelle´-Regnaut, I.; Gautier, A.; Brown, S.
M.; Urch, C. J . J . Org. Chem. 1999, 64, 2433.
(10) Dijksman, A.; Marino-Gonzales, A.; Mairata i Payeras, A.;
Arends, I. W. C. E.; Sheldon, R. A. J . Am. Chem. Soc. 2001, 6826.
(11) (a) Marko´, I. E.; Giles, P. R.; Tsukazaki, M.; Chelle´-Regnaut,
I.; Urch, C. J .; Brown, S. M. J . Am. Chem. Soc. 1997, 119, 12661. (b)
Lenz, R.; Ley, S. V. J . Chem. Soc., Perkin Trans. 1 1997, 3291.
(12) (a) Naota, T.; Takaya, H.; Murahashi, S.-I. Chem. Rev. 1998,
98, 2599. (b) Murahashi, S.-I.; Naota, T.; Hirai, N. J . Org. Chem. 1993,
58, 7318. (b) Arterburn, J . B. Tetrahedron 2001, 57, 9765.
(13) (a) Blackburn, T. F.; Schwartz, J . J . J . Chem. Soc. Chem.
Commun. 1977, 158. (b) Kaneda, K.; Fujie, Y.; Ebitani, K. Tetrahedron
Lett. 1997, 38, 9023. (c) Peterson, K. P.; Larock, R. C. J . Org. Chem.
1998, 63, 3185. (d) Nishimura, T.; Onoue, T.; Ohe, K.; Uemura, S.
Tetrahedron Lett. 1998, 39, 6011.
† Stockhom University.
‡ Solvias AG.
(1) Pyridine Nucleotide Coenzymes: Chemical Biochemical, and
Medical Aspects; Dolphin, D., Avramovic, O., Poulson, R., Eds.; J ohn
Wiley & Sons: New York, 1987.
(2) Lehninger’s Principles of Biochemistry, 3rd ed.; Nelson, D. L.,
Lox, M. M., Eds.; Worth Publishers: New York, 2000.
(3) (a) Duester, G. Biochemistry 1996, 35, 12221. (b) Gille, L.; Nohl,
H. Arch. Biochem. Biophys. 2000, 375, 347. (c) Electron Transfer in
Chemistry; Balzani, V., Ed.; Wiley VCH: Weinheim, 2001.
(4) Tsuji, J . Palladium Reagents and Catalysts. Innovations in
Organic Synthesis; Wiley: Chichester, UK, 1995.
(14) Iwahama, T.; Yoshino, Y.; Keitoku, T.; Sakaguchi, S.; Ishii, Y.
J . Org. Chem. 2000, 65, 6502.
(15) (a) Bilgrien, C.; Davis, S.; Drago, R. S. J . Am. Chem. Soc. 1987,
109, 3786. (b) Tang, R.; Diamond, S. E.; Neary, N.; Mares, F. J . Chem.
Soc. Chem. Commun. 1978, 562.
(16) Brink, G.-J .; Arends, I. W. C. E.; Sheldon, R. A. Science 2000,
287, 1636.
(5) (a) Ba¨ckvall, J .-E.; Hopkins, R. B.; Grennberg, H.; Mader, M.;
Awasthi, A. K. J . Am. Chem. Soc. 1990, 112, 5160. (b) Wo¨ltinger, J .;
Ba¨ckvall, J .-E.; Zsigmond, A. Chem. Eur. J . 1999, 5, 1460.
10.1021/jo0163750 CCC: $22.00 © 2002 American Chemical Society
Published on Web 02/05/2002