10.1002/anie.202003079
Angewandte Chemie International Edition
COMMUNICATION
Finally, we carried out detailed mass spectrometric studies (LC-
ESI-MS) on the crude mixture collected from the oxidation of
isopropanol 52 in the presence of TEMPO. These revealed a
signal at m/z = 216.2 (M++1) which is indicative for TEMPO-
adduct 53 that, however, could not be isolated (Scheme 9,
example C).
Keywords: azide radical • C-H activation • iodine azide •
polymer-bound reagents • photochemistry
[1]
a) F. W. Fowler, A. Hassner, L. A. Levy, J. Am. Chem. Soc. 1967, 89,
2077-2082; b) A. Hassner, Acc. Chem. Res. 1971, 4, 9-16; c) A.
Hassner, F. W. Fowler, J. Org. Chem. 1968, 33, 2686-2691.
G. O. Olah, Q. Wang, X.-Y. Li, G. K. S. Prakash, Synlett 1990, 487-489.
A. Kirschning, C. Plumeier, L. Rose, Chem. Commun. 1998, 33-34.
The structure of bisacyliodate(I) salts was recently confirmed by X-ray
2017, 23, 1453-1722.
[2]
[3]
[4]
With reference to the BDE of IN3, and the H-abstraction
capability of both radicals a mechanistic scheme can be
summarized (Scheme 10). Polymer-bound iodate(I) complex 3d
provides iodine azide (5) and under photocatalytic conditions
homolytic cleavage yields the azide and iodine radical 6 and 7.
While the iodine atom radical (7) is able to recombine to I2 the
corresponding dimerisation of the azide radical (6) to N6 is not
reported. The azide radical (6) is able to add to alkenes and the
newly formed radical I can be trapped by the iodine or the azide
radicals 6 and 7 or by TEMPO. The azide radical (6) also
enforces C-H abstraction next to a C-O bond such as in
tetrahydrofuran or alcohols. In the former example this was
proven by isolation of the TEMPO adduct while in the second
case the corresponding ketones formed from secondary
alcohols via the ketyl radicals II. Primary alcohols also form
intermediate II but the resulting aldehyde undergoes a second
C-H abstraction to yield an acyl radical III. This is trapped by 6 to
yield acyl azides that may undergo the Curtius rearrangement
with final addition of HN3 to the intermediate isocyanate.
[5]
a) Md. A. Hashem, A. Jung, M. Ries, A. Kirschning, Synlett 1998, 195-
197; b) A. Kirschning, Md. A. Hashem, H. Monenschein, L. Rose, K.-U.
Schöning, J. Org. Chem. 1999, 64, 6522-6526; c) H. Monenschein, G.
Sourkouni-Argirusi, K. M. Schubothe, T. O’Hare, A. Kirschning, Org.
Lett. 1999, 1, 2101-2105; d) S. Domann, G. Sourkouni-Argirusi, N.
Merayo, A. Schönberger, A. Kirschning, Molecules 2001, 6, 127-132; e)
A. Kirschning, E. Kunst, M. Ries, L. Rose, A. Schönberger, R.
Wartchow, Arch. Org. Chem. (ARKIVOC) 2003, 145-162.
[6]
[7]
S. Luiken, A. Kirschning, J. Org. Chem. 2008, 73, 2018-2020.
a) A. Kirschning, A. Schönberger, M. Jesberger: Org. Lett. 2001, 3,
3623-3626; b) J. Jaunzems, G. Sourkouni-Argirusi, M. Jesberger, A.
Kirschning, Tetrahedron Lett. 2003, 44, 637-639.
[8]
[9]
a) A. Kirschning, G. Sourkouni-Argirusi, M. Brünjes, Adv. Synth. Catal.
2003, 345, 635-642; b) K. Kloth, M. Brünjes, E. Kunst, F. Gallier, A.
Adibekian, A. Kirschning, Adv. Synth. Catal. 2005, 347, 1423-1434.
A. Kirschning, H. Monenschein, C. Schmeck, Angew. Chem. 1999, 111,
2720-2722.
[10] S. Cludius-Brandt, L. Kupracz, A. Kirschning, Beilstein J. Org. Chem.
2013, 9, 1745-1750.
[11] A. Kirschning, H. Monenschein, Polymer-bound ammonium
bisazidoiodate (I), e-EROS, 2002.
[12] A. Hassner, L. Marinescu, M. Bols, Iodine azide, e-EROS, 2005.
[13] H. Monenschein, Ph. D. thesis TU Clausthal, Germany, 2001.
[14] X. Huang, J. T. Groves, ACS Catal. 2016, 6, 751-759.
[15] a) Y. R. Luo, Comprehensive Handbook of Chemical Bond Energies;
CRC Press, Boca Raton, FL, 2007; b) W. R. Zheng, Z. C. Chen, W. X.
Xu, Chin. J. Chem. Phys. 2013, 26, 541−548.
3884.
[17] S.-Y. Zhang, F.-M. Zhang, Y.-Q. Tu, Chem. Soc. Rev., 2011,40, 1937–
1949.
[18] a) H. Aruri, U. Singh, S. Sharma, S. Gudup, M. Bhogal, S. Kumar, D.
Singh, V. K. Gupta, R. Kant, R. A. Vishwakarma, P. P. Singh, J. Org.
Chem. 2015, 80, 1929-1936; b) F. Fontand, F. Minis, Y. M. Yan. L. Zha,
Tetrahedron Lett. 1993, 34, 251- 2520.
[19] J. C. Siu, J. B. Parry, S. Lin, J. Am. Chem. Soc. 2019, 141, 2825-2831.
[20] CCDC 1985449 contains the supplementary crystallographic data for
this compound. These data can be obtained free of charge from The
Cambridge
Crystallographic
Data
Centre
via
[21] a) V. V. Zhdankin, C. J. Kuehl, A. P. Krasutsky, M. S. Formaneck, J. T.
Bolz, Tetrahedron Lett. 1994, 35, 9677-9680; b) V. V. Zhdankin, A. P.
Krasutsky, C. J. Kuehl, A. J. Simonsen, J. K. Woodward, B. Mismash, J.
T. Bolz, J. Am. Chem. Soc. 1996, 118, 5192-5197.
[22] B. Zhang, A. Studer, Org. Lett., 2013, 15, 4548-4551.
[23] J. C. Siu, G. S. Sauer, A. Saha, R. L. Macey, N. Fu, T. Chauviré, K. M.
Lancaster, S. Lin, J. Am. Chem. Soc. 2018, 140, 12511-12520.
[24] D. S. Rao, T. R. Reddy, A. Gurawa, M. Kumar, S. Kashyap, Org. Lett.
2019, 24, 9990-9994.
[25] It was reported that hypochlorite preferably also oxidises secondary
alcohols: R. V. Stevens, K. T. Chapman, C. A. Stubbs, W. W. Tam, K.
F. Albizati, K. F. Tetrahedron Lett. 1982, 23, 4647-4650.
Scheme 10. Proposed mechanistic considerations on radical processes
reported here.
[26] R. J. Ferrier, N. Prasad, J. Chem. Soc. C. 1969, 570-575.
[27] a) M. V. Ciriano, H.-G. Korth, W. B. van Scheppingen, P. Mulder, J. Am.
Chem. Soc. 1999, 121, 27, 6375-6381.
[28] D. Hernández-Guerra, A. Hlavacˇková, C. Pramthaisong, I. Vespoli, R.
Pohl, T. Slanina, U. Jahn, Angew. Chem. Int. Ed. 2019, 58, 12440–
12445.
In essence, we showed that the polymer-bound bisazido(iodate
(I)) anion 3d is the most versatile source of the azide radical (6)
in photocatalytic reactions.[30] It performs azido oxygenations of
alkenes and C-H abstractions of ethers and alcohols.
[29] F. Fontana, F. Minisci, M. Y. Yong, Z. Lihua, Tetrahedron Lett. 1993, 34,
2517-2520.
[30] Thermal homolytic cleavage of iodine azide and azidation of benzylic
M. Bols, Angew. Chem. Int. Ed. 2001, 40, 623-624.
[31] It can infinitely be regenerated (Scheme 2). Chemical changes of the
polymer backbone initated by the radicals formed were not studied here.
Acknowledgements
The work was in part funded by the BMBF (project: SILVIR). Dr.
J. Fohrer (Leibniz University Hannover) is thanked for support in
NMR analyses. We thank Alexey Stepanyuk (Leibniz University
Hannover) for expert technical assistance.
This article is protected by copyright. All rights reserved.