M. Abdollahi-Alibeik, M. Hajihakimi/Chemical Papers 67 (5) 490–496 (2013)
495
Table 3. Reusability of SO24−–ZrO2 in the reaction of o-
ships for 2-phenylbenzimidazole-4-carboxamides, a new class
of minimal DNA-intercalating agents which may not act via
topoisomerase II. Journal of Medicinal Chemistry, 33, 814–
819. DOI: 10.1021/jm00164a054.
phenylenediamine and benzaldehyde
Time
min
Yield
%
Run
Dhakshinamoorthy, A., Kanagaraj, K.,
& Pitchumani, K.
(2011). Zn2+-K10-clay (clayzic) as an efficient water-tolerant,
solid acid catalyst for the synthesis of benzimidazoles and
quinoxalines at room temperature. Tetrahedron Letters, 52,
69–73. DOI: 10.1016/j.tetlet.2010.10.146.
1
2
3
4a
45
60
70
55
77
69
67
72
Du, L. H., & Wang, Y. G. (2007). A rapid and efficient syn-
thesis of benzimidazoles using hypervalent iodine as oxidant.
Synthesis, 2007, 675–678. DOI: 10.1055/s-2007-965922.
Dudd, L. M., Venardou, E., Garcia-Verdugo, E., Licence, P.,
Blake, A. J., Wilson, C., & Poliakoff, M. (2003). Synthesis of
benzimidazoles in high-temperature water. Green Chemistry,
5, 187–192. DOI: 10.1039/b212394k.
Fekner, T., Gallucci, J., & Chan, M. K. (2004). Ruffling-induced
chirality: Synthesis, metalation, and optical resolution of
highly nonplanar, cyclic, benzimidazole-based ligands. Jour-
nal of the American Chemical Society, 126, 223–236. DOI:
10.1021/ja030196d.
a) Catalyst was calcined at 600◦C for 2 h before use.
SO24−–ZrO2 in EtOH as the solvent was introduced.
The mild reaction conditions, simple experimental
procedure, the ease of the catalyst recovery, as well
as the reusability of the catalyst are some of the ad-
vantages of this method.
Fonseca, T., Gigante, B., & Gilchrist, T. L. (2001). A short
synthesis of phenanthro[2,3-d]imidazoles from dehydroabi-
etic acid. Application of the methodology as a convenient
route to benzimidazoles. Tetrahedron, 57, 1793–1799. DOI:
10.1016/s0040-4020(00)01158-3.
Acknowledgements. The authors are thankful to the Payame
Noor University of Ardakan for partial support of this work.
References
Hasegawa, E., Yoneoka, A., Suzuki, K., Kato, T., Kitazume,
T., & Yanagi, K. (1999). Reductive transformation of α,
β-epoxy ketones and other compounds promoted through
photoinduced electron transfer processes with 1,3-dimethyl-
2-phenylbenzimidazoline (DMPBI). Tetrahedron, 55, 12957–
12968. DOI: 10.1016/s0040-4020(99)00804-2.
Hein, D. W., Alheim, R. J., & Leavitt, J. J. (1957). The use
of polyphosphoric acid in the synthesis of 2-aryl- and 2-
alkyl-substituted benzimidazoles, benzoxazoles and benzoth-
iazoles. Journal of the American Chemical Society, 79, 427–
429. DOI: 10.1021/ja01559a053.
Abdollahi-Alibeik, M., Mohammadpoor-Baltork, I., Zaghaghi,
Z.,
& Yousefi, B. H. (2008). Efficient synthesis of 1,5-
benzodiazepines catalyzed by silica supported 12-tungsto-
phosphoric acid. Catalysis Communications, 9, 2496–2502.
DOI: 10.1016/j.catcom.2008.07.004.
Abdollahi-Alibeik, M., & Zaghaghi, Z. (2009). 1,3-Dibromo-5,5-
dimethylhydantoin as a useful reagent for efficient synthesis
of 3,4-dihydropyrimidin-2-(1H)-ones under solvent-free con-
ditions. Chemical Papers, 63, 97–101. DOI: 10.2478/s11696-
008-0084-1.
Abdollahi-Alibeik, M., & Moosavifard, M. (2010). FeCl3-doped
polyaniline nanoparticles as reusable heterogeneous catalyst
for the synthesis of 2-substituted benzimidazoles. Synthetic
Communications, 40, 2686–2695. DOI: 10.1080/0039791090
3318658.
Abdollahi-Alibeik, M., & Pouriayevali, M. (2011). 12-Tungsto-
phosphoric acid supported on nano sized MCM-41 as an effi-
cient and reusable solid acid catalyst for the three-component
imino Diels–Alder reaction. Reaction Kinetics, Mechanisms
and Catalysis, 104, 235–248. DOI: 10.1007/s11144-011-0345-
9.
Karami, B., Khodabakhshi, S.,
& Haghighijou, Z. (2012).
Tungstate sulfuric acid: preparation, characterization, and
application in catalytic synthesis of novel benzimidazoles.
Chemical Papers, 66, 684–690. DOI: 10.2478/s11696-012-
0152-4.
Katritzky, A. R., Aslan, D. C., & Oniciu, D. C. (1998). Stereose-
lective synthesis of 2-(α-hydroxyalkyl)benzimidazoles. Tetra-
hedron: Asymmetry, 9, 2245–2251. DOI: 10.1016/s0957-
4166(98)00202-x.
Lopez, S. E., Restrepo, J., Perez, B., Ortiz, S., & Salazar,
J. (2009). One pot microwave promoted synthesis of 2-
aryl-1H-benzimidazoles using sodium hydrogen sulfite. Bul-
letin of the Korean Chemical Society, 30, 1628–1630. DOI:
10.5012/bkcs.2009.30.7.1628.
Abdollahi-Alibeik, M., & Heidari-Torkabad, E. (2012). H3PW12
O40/MCM-41 nanoparticles as efficient and reusable solid
acid catalyst for the synthesis of quinoxalines. Comptes Ren-
dus Chimie, 15, 517–523. DOI: 10.1016/j.crci.2012.04.005.
Mohammadpoor-Baltork, I., Khosropour, A. R., & Hojati, S.
F. (2007). ZrOCl2·8H2O as an efficient, environmentally
friendly and reusable catalyst for synthesis of benzoxazoles,
benzothiazoles, benzimidazoles and oxazolo[4,5-b]pyridines
under solvent-free conditions. Catalysis Communications, 8,
1865–1870. DOI: 10.1016/j.catcom.2007.02.020.
Nadaf, R. N., Siddiqui, S. A., Daniel, T., Lahoti, R. J., &
Srinivasan, K. V. (2004). Room temperature ionic liquid pro-
moted regioselective synthesis of 2-aryl benzimidazoles, ben-
zoxazoles and benzthiazoles under ambient conditions. Jour-
nal of Molecular Catalysis A: Chemical, 214, 155–160. DOI:
10.1016/j.molcata.2003.10.064.
Abdollahi-Alibeik, M.,
& Pouriayevali, M. (2012). Nano-
sized MCM-41 supported protic ionic liquid as an effi-
cient novel catalytic system for Friedlander synthesis of
quinolines. Catalysis Communications, 22, 13–18. DOI:
10.1016/j.catcom.2012.02.004.
Adam, F., Batagarawa, M., Hello, K., & Al-Juaid, S. (2012).
One-step synthesis of solid sulfonic acid catalyst and its ap-
plication in the acetalization of glycerol: crystal structure
of cis-5-hydroxy-2-phenyl-1,3-dioxane trimer. Chemical Pa-
pers, 66, 1048–1058. DOI: 10.2478/s11696-012-0203-x.
Chen, G. F.,
& Dong, X. Y. (2012). Facile and selec-
tive synthesis of 2-substituted benzimidazoles catalyzed by
FeCl3/Al2O3. E-Journal of Chemistry, 9, 289–293. DOI:
10.1155/2012/197174.
Denny, W. A., Rewcastle, G. W., & Baguley, B. C. (1990).
Potential antitumor agents. 59. Structure-activity relation-
Negrón, G. E., Palacios, L. N., Angeles, D., Lomas, L., &
Gavin˜o, R. (2005). A mild and efficient method for the
chemoselective synthesis of acylals from aromatic aldehydes
and their deprotections catalyzed by sulfated zirconia. Jour-