Page 7 of 8
Physical Chemistry Chemical Physics
Please do not adjust margins
Journal Name
ARTICLE
active under visible light, Angew. Chem.-Int. Ed., 2008, 47, 7931– 21 W. Srituravanich, N. Fang, C. Sun, Q. Luo and X. Zhang, Plasmonic
7933.
nanolithography, Nano Lett., 2004, 4, 1085–1088.
DOI: 10.1039/C8CP07504B
3 X.-C. Ma, Y. Dai, L. Yu and B.-B. Huang, Energy transfer in plasmonic 22 A. Bouvrée, A. D’Orlando, T. Makiabadi, S. Martin, G. Louarn, J. Y.
photocatalytic composites, Light-Sci. Appl., 2016, 5, e16017.
4 Z. W. Seh, S. Liu and M.-Y. Han, Titania-Coated Metal
Nanostructures, Chem. – Asian J., 2012, 7, 2174–2184.
Mevellec and B. Humbert, Nanostructured and nanopatterned
gold surfaces: application to the surface-enhanced Raman
spectroscopy, Gold Bull., 2013, 46, 283–290.
5 H. Sakai, T. Kanda, H. Shibata, T. Ohkubo and M. Abe, Preparation 23 K. A. Willets and R. P. Van Duyne, in Annual Review of Physical
of Highly Dispersed Core/Shell-type Titania Nanocapsules Chemistry, 2007, vol. 58, pp. 267–297.
Containing a Single Ag Nanoparticle, J. Am. Chem. Soc., 2006, 128, 24 K. L. Kelly, E. Coronado, L. L. Zhao and G. C. Schatz, The optical
4944–4945.
properties of metal nanoparticles: The influence of size, shape, and
6 K. S. Mayya, D. I. Gittins and F. Caruso, Gold−Titania Core−Shell
dielectric environment, J. Phys. Chem. B, 2003, 107, 668–677.
Nanoparticles by Polyelectrolyte Complexation with a Titania 25 J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan,
Precursor, Chem. Mater., 2001, 13, 3833–3836.
W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang and Z. Q. Tian,
Shell-isolated nanoparticle-enhanced Raman spectroscopy,
Nature, 2010, 464, 392–395.
26 S. Guan, O. Donovan-Sheppard, C. Reece, D. J. Willock, A. J. Wain
and G. A. Attard, Structure Sensitivity in Catalytic Hydrogenation at
Platinum Surfaces Measured by Shell-Isolated Nanoparticle
Enhanced Raman Spectroscopy (SHINERS), Acs Catal., 2016, 6,
1822–1832.
7 R. Güttel, M. Paul and F. Schüth, Activity improvement of gold
yolk–shell catalysts for CO oxidation by doping with TiO2, Catal. Sci.
Technol., 2011, 1, 65–68.
8 Z. W. Seh, S. Liu, M. Low, S.-Y. Zhang, Z. Liu, A. Mlayah and M.-Y.
Han, Janus Au-TiO2 Photocatalysts with Strong Localization of
Plasmonic Near-Fields for Efficient Visible-Light Hydrogen
Generation, Adv. Mater., 2012, 24, 2310–2314.
9 N. Zhang, S. Liu, X. Fu and Y.-J. Xu, Synthesis of M@TiO 2 (M = Au, 27 J. F. Li, X. D. Tian, S. B. Li, J. R. Anema, Z. L. Yang, Y. Ding, Y. F. Wu,
Pd, Pt) Core–Shell Nanocomposites with Tunable Photoreactivity,
J. Phys. Chem. C, 2011, 115, 9136–9145.
10 D. D. Lekeufack, A. Brioude, A. Mouti, J. G. Alauzun, P.
Y. M. Zeng, Q. Z. Chen, B. Ren, Z. L. Wang and Z. Q. Tian, Surface
analysis using shell-isolated nanoparticle-enhanced Raman
spectroscopy, Nat. Protoc., 2013, 8, 52–65.
Stadelmann, A. W. Coleman and P. Miele, Core–shell Au@(TiO2, 28 J.-F. Li, J. R. Anema, T. Wandlowski and Z.-Q. Tian, Dielectric shell
SiO2) nanoparticles with tunable morphology, Chem. Commun.,
2010, 46, 4544–4546.
11 Y. Lu, Y. D. Yin, Z. Y. Li and Y. N. Xia, Synthesis and self-assembly
of Au@SiO2 core-shell colloids, Nano Lett., 2002, 2, 785–788.
12 Y. Lu, Y. D. Yin, B. T. Mayers and Y. N. Xia, Modifying the surface
properties of superparamagnetic iron oxide nanoparticles through
a sol-gel approach, Nano Lett., 2002, 2, 183–186.
isolated and graphene shell isolated nanoparticle enhanced Raman
spectroscopies and their applications, Chem. Soc. Rev., 2015, 44,
8399–8409.
29 C. Zheng, W. Shao, S. K. Paidi, B. Han, T. Fu, D. Wu, L. Bi, W. Xu,
Z. Fan and I. Barman, Pursuing shell-isolated nanoparticle-
enhanced Raman spectroscopy (SHINERS) for concomitant
detection of breast lesions and microcalcifications, Nanoscale,
2015, 7, 16960–16968.
13 M. A. Hossain, J. Park, D. Yoo, Y.-K. Baek, Y. Kim, S. H. Kim and D.
Lee, Surface plasmonic effects on dye-sensitized solar cells by SiO2- 30 K. G. Schmitt, R. Schmidt, H. F. von-Horsten, G. Vazhenin and A.
encapsulated Ag nanoparticles, Curr. Appl. Phys., 2016, 16, 397–
A.
Gewirth,
3-Mercapto-1-Propanesulfonate
for
Cu
403.
Electrodeposition Studied by in Situ Shell-Isolated Nanoparticle-
Enhanced Raman Spectroscopy, Density Functional Theory
Calculations, and Cyclic Voltammetry, J. Phys. Chem. C, 2015, 119,
23453–23462.
14 L. M. Liz-Marzan, M. Giersig and P. Mulvaney, Synthesis of
nanosized gold-silica core-shell particles, Langmuir, 1996, 12,
4329–4335.
15 R. T. Tom, A. S. Nair, N. Singh, M. Aslam, C. L. Nagendra, R. Philip, 31 C. Burda, X. B. Chen, R. Narayanan and M. A. El-Sayed, Chemistry
K. Vijayamohanan and T. Pradeep, Freely dispersible Au@TiO2,
Au@ZrO2, Ag@TiO2, and Ag@ZrO2 core-shell nanoparticles: One-
and properties of nanocrystals of different shapes, Chem. Rev.,
2005, 105, 1025–1102.
step synthesis, characterization, spectroscopy, and optical limiting 32 F. Forato, S. Talebzadeh, B. Bujoli, C. Queffelec, S. A. Trammell
properties, Langmuir, 2003, 19, 3439–3445.
16 M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang,
D. Qin and Y. Xia, Controlling the Synthesis and Assembly of Silver
and D. A. Knight, Core-Shell Ag@TiO2 Nanocomposites for Low-
Power Blue Laser Enhanced Copper(I) Catalyzed Ullmann Coupling,
Chemistryselect, 2017, 2, 769–773.
Nanostructures for Plasmonic Applications, Chem. Rev., 2011, 111, 33 J. Grausem, B. Humbert, M. Spajer, D. Courjon, A. Burneau and J.
3669–3712.
Oswalt, Near-field Raman spectroscopy, J. Raman Spectrosc., 1999,
30, 833–840.
17 S. M. Nie and S. R. Emery, Probing single molecules and single
nanoparticles by surface-enhanced Raman scattering, Science, 34 A. De Bonis, G. Compagnini, R. S. Cataliotti and G. Marletta,
1997, 275, 1102–1106.
18 L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar and S. S.
Yee, Quantitative interpretation of the response of surface
Adsorption-induced conformational transition in 2,2′-bipyridine on
silver surfaces: a surface-enhanced Raman scattering study, J.
Raman Spectrosc., 1999, 30, 1067–1071.
plasmon resonance sensors to adsorbed films, Langmuir, 1998, 14, 35 J. Docherty, S. Mabbott, W. E. Smith, J. Reglinski, K. Faulds, C.
5636–5648.
Davidson and D. Graham, Determination of metal ion
concentrations by SERS using 2,2 ’-bipyridyl complexes, Analyst,
2015, 140, 6538–6543.
36 C. Busche, P. Comba, A. Mayboroda and H. Wadepohl, Novel Ru-
II Complexes with Bispidine-Based Bridging Ligands: Luminescence
Sensing and Photocatalytic Properties, Eur. J. Inorg. Chem., 2010,
1295–1302.
19 J. M. Brockman, B. P. Nelson and R. M. Corn, Surface plasmon
resonance imaging measurements of ultrathin organic films, Annu.
Rev. Phys. Chem., 2000, 51, 41–63.
20 Z. Xie, W. Yu, T. Wang, H. Zhang, Y. Fu, H. Liu, F. Li, Z. Lu and Q.
Sun, Plasmonic Nanolithography: A Review, Plasmonics, 2011, 6,
565–580.
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 7
Please do not adjust margins