the development of novel peptidic nanostructures with interesting
biological and functional properties, including electron/energy
transfer systems, artificial host compounds, DNA polyintercalat-
ing molecules and telomerase inhibitors. Efforts along these lines
are currently being pursued in our laboratory.
This research was supported by the NSERC of Canada and the
FQRNT of Quebec. E.B. thanks the NSERC of Canada and the
FQRNT of Quebec for postgraduate scholarships.
Notes and references
1
(a) G. R. Geier, III and T. Sasaki, Tetrahedron Lett., 1997, 38,
821–3824; (b) J.-C. Meillon and N. Voyer, Angew. Chem., Int. Ed.
3
Engl., 1997, 36, 967–969; (c) D. Robertson, R. Farld, C. Moser,
J. Urbauer, S. E. Mulholland, R. Pidikiti, J. D. Lear, A. J. Wand,
W. F. Degrado and P. L. Dutton, Nature, 1994, 368, 425–432; (d)
T. Sasaki and E. T. Kaiser, Biopolymers, 1990, 29, 79–87.
2
(a) D. M. Rothman, M. E. Vazquez, E. M. Vogel and B. Imperiali,
J. Org. Chem., 2003, 68, 6795–6798; (b) M. D. Shults and B. Imperiali,
J. Am. Chem. Soc., 2003, 125, 14248–14249; (c) B. Imperiali and
J. J. Ottesen, J. Peptide Res., 1999, 54, 177–184 and references therein.
(a) J. P. Schneider and J. W. Kelly, Chem. Rev., 1995, 95, 2169–2187; (b)
N. Voyer and J. Lamothe, Tetrahedron, 1995, 51, 9241–9248; (c)
N. Voyer, Top. Curr. Chem., 1996, 184, 1–37.
(a) I. M. Dixon, F. Lopez, J.-P. Est e` ve, A. M. Tejera, M. A. Blasco,
G. Pratviel and B. Meunier, ChemBioChem, 2005, 6, 123–132; (b)
D.-F. Shi, R. T. Wheelhouse, D. Sun and L. H. Hurley, J. Med. Chem.,
2001, 44, 4509–4523.
3
4
Fig. 1 Spectrophotometric titrations of H
DNAs. A) UV titration of H TMPyP with CT-DNA; B) UV titration of 8
with CT-DNA; C) Induced CD of TMPyP with CT-DNA,
poly(dAdT) and poly(dGdC) at 1/R 5 6; D) Induced CD of 8 with
CT-DNA, poly(dAdT) and poly(dGdC) at 1/R 5 6.
2
MTPyP and 8 with various
2
5
6
M. Sirish, V. A. Chertkov and H.-J. Schneider, Chem. Eur. J., 2002, 8,
1181–1188.
(a) G. Dougherty, J. R. Pilbrow, A. Skorobogaty and T. Smith, J. Chem.
Soc., Faraday Trans. 2, 1985, 81, 1739–1759; (b) R. J. Fiel, J. C. Howard,
E. H. Mark and N. Datta-Gupta, Nucleic Acids Res., 1979, 6,
H
2
2
2
2
2
3
093–3118; (c) J. M. Kelly, J. M. Murphy, D. J. McConnell and
Induced circular dichroism (ICD) in the Soret region is very
helpful for analysis of the binding mode of an achiral porphyrin to
C. OhUigin, Nucleic Acids Res., 1985, 13, 167–184; (d) R. F. Pasternack,
E. J. Gibbs and J. J. Villafranca, Biochemistry, 1983, 22, 2406–2414; (e)
R. F. Pasternack, E. J. Gibbs and J. J. Villafranca, Biochemistry, 1983,
6d,14
chiral DNA.
2
Cationic porphyrins, H TMPyP and compound
2
2, 5409–5417; (f) L. A. Lipscomb, F. X. Zhou, S. R. Presnell, R. J. Woo,
M. E. Peek, R. R. Plaskon and L. D. Williams, Biochemistry, 1996, 35,
818–2823; (g) R. F. Pasternack, J. I. Goldsmith, S. Sz e´ p and E. J. Gibbs,
Biophys. J., 1998, 75, 1024–1031.
8
, did not show any ICD in the absence of duplex DNA, but
characteristic spectra in the Soret region were induced with
addition of DNA in buffer (TE 10 mM, NaCl 50 mM, EDTA
2
1
mM, pH 7.0). Fig. 1C shows the ICD spectra of H TMPyP
2
7 (a) T. Maisch, R. M. Szeimies, G. Jori and C. Abels, Photochem.
Photobiol. Sci., 2004, 3, 907–917; (b) M. R. Detty, S. L. Gibson and
S. J. Wagner, J. Med. Chem., 2004, 47, 3897–3915; (c) R. Ackroyd,
C. Kelty, N. Brown and M. Reed, Photochem. Photobiol., 2001, 74,
656–669.
bound to CT-DNA, poly(dAdT) and poly(dGdC) at 1/R 5 6. In
2
2
2
the presence of poly(dAdT) the ICD spectrum comprised a small
negative peak at 427 nm and a large positive peak at 437 nm
corresponding to groove binding. In the presence of poly(dGdC)2
and CT-DNA a negative peak was induced at 439 and 433 nm,
respectively, corresponding to intercalative binding. ICD spectra of
compound 8 bound to various DNAs showed a similar profile
8
(a) A. D. Adler, F. R. Longo, J. D. Finarelli, J. Goldmacher, J. Asour
and L. Korsakoff, J. Org. Chem., 1967, 32, 476–482; (b) L. Ding,
C. Casas, G. Eternad-Moghadam and B. Meunier, New J. Chem., 1990,
1
4, 421–431.
9 (a) M. Carvlin and R. J. Fiel, Nucleic Acids Res., 1983, 11, 6121–6139;
b) M. Carvlin, E. Mark, R. J. Fiel and J. C. Howard, Nucleic Acids
(
(Fig. 1D) with a positive peak at 442 nm in presence of
Res., 1983, 11, 6141–6154; (c) D. R. McMillin and K. M. McNett,
Chem. Rev., 1998, 98, 1201–1220; (d) S. Mohammadi, M. Perree-
Fauvet, N. Gresh, K. Hillairet and E. Taillandier, Biochemistry, 1998,
poly(dAdT) and a negative peak at 438 nm in presence of
2
poly(dGdC) and CT-DNA. The obtained results confirmed that
2
3
7, 6165–6178.
0 (a) J. A. Strickland, L. G. Marzilli and W. D. Wilson, Biopolymers,
990, 29, 1307–1323; (b) D. L. Banville, L. G. Marzilli, J. A. Strickland
the modified porphyrin maintains its DNA-binding properties
when introduced into a peptide structure and clearly show that
intercalative binding occurs at a GC-rich region and groove
1
1
and W. D. Wilson, Biopolymers, 1986, 25, 1837–1858; (c) G. D. Strahan,
D. Lu, M. Tsuboi and K. Nakamoto, J. Phys. Chem., 1992, 96,
6d,12–14
binding at an AT-rich region.
6450–6457.
In conclusion, cationic porphyrin modified amino acids were
rapidly and efficiently prepared in both N-Fmoc and N-Boc
protected forms. The N-Fmoc protected modified amino acid was
successfully used in solid-phase peptide synthesis, demonstrating
the compatibility of porphyrin residues with Fmoc-SPPS condi-
tions. We also showed that DNA-binding properties of the
cationic modified porphyrin are maintained when it is introduced
into a peptidic sequence compared to the cationic porphyrin
1
1 R. F. Pasternack, E. J. Gibbs, A. Gaudemer, A. Antebi, S. Bassner,
L. D. Poy, D. H. Turner, A. Williams, F. Laplace, M. H. Lansard,
C. Merienne and M. Perre-Fauvet, J. Am. Chem. Soc., 1985, 107,
8179–8186.
12 N. E. Mukundan, G. Petho, D. W. Dixon and L. G. Marzilli, Inorg.
Chem., 1995, 34, 3677–3687.
13 C. Verch e` re-B e´ aur, M. Perr e´ e-Fauvet, E. Tarnaud, G. Anneheim-
Herbelin, N. B oˆ ne and A. Gaudener, Tetrahedron, 1996, 52,
13589–13604 and references cited therein.
1
4 (a) R. J. Fiel, J. Biomol. Struct. Dyn., 1989, 6, 1259–1274; (b)
R. F. Pasternack and E. J. Gibbs, Met. Ions Biol. Syst., 1996, 33,
367–397.
analogue H TMPyP. With the possibility of solid-phase quaterni-
2
zation, modified amino acids 5 and 6 are useful building blocks for
4
654 | Chem. Commun., 2005, 4652–4654
This journal is ß The Royal Society of Chemistry 2005