Organic Letters
Letter
formation of α-vinlysilane is presented in Scheme 5. We
propose that a low-valent cobalt(I) silyl intermediate (A)
2d,20
Cambridge Crystallographic Data Centre, 12 Union Road,
Cambridge CB2 1EZ, U.K.; fax: +44 1223 336033.
Scheme 5. Proposed Mechanism
AUTHOR INFORMATION
■
*
ORCID
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
The authors would like to acknowledge the financial support
from QIBEBT and the 13th-Five Key Project of the Chinese
Academy of Sciences (Grant No. Y7720519KL).
REFERENCES
■
(
8
1) (a) Blumenkopf, T. A.; Overman, L. E. Chem. Rev. 1986, 86,
57−873. (b) Langkopf, E.; Schinzer, D. Chem. Rev. 1995, 95, 1375−
408. (c) Metal-Catalyzed Cross-Coupling Reactions, 2nd Edition;
1
Denmark, S. E., Sweis, R. F., Eds.; Wiley−VCH: Weinheim, Germany,
2
008. (d) Chan, T. H.; Fleming, I. Synthesis 1979, 1979, 761−786.
was generated by a precatalyst with NaBHEt and PhSiH ,
3
3
(e) Fleming, I.; Barbero, A.; Walter, D. Chem. Rev. 1997, 97, 2063−
2192.
which can further coordinate to the C−C triple bond of
alkynes to form the intermediate (B). The insertion of alkynes
into a Co−Si intermediate produces a vinylcobalt species (C),
(2) (a) Hydrosilylation: A Comprehensive Review on Recent Advances;
Marciniec, B., Ed.; Springer: Berlin, 2009. (b) Brunner, H. Angew.
Chem., Int. Ed. 2004, 43, 2749−2750. (c) Lim, D. S. W.; Anderson, E.
A. Synthesis 2012, 44, 983−1010. (d) Sun, J.; Deng, L. ACS Catal.
21
which can undergo Crabtree−Ojima-type isomerization to
form intermediates D and C′. Both intermediate C and C′ can
afford α-vinysilane 3 by hydrosilane and regenerate the
catalytically active cobalt silyl species (A).
2
016, 6, 290−300.
3) (a) Lu, C.; Gu, S.; Chen, W.; Qiu, H. Dalton Trans 2010, 39,
(
4
198−4204. (b) Blug, M.; Le Goff, X.-F.; Mezailles, N.; Le Floch, P.
In summary, we have developed a new type of amine-
pyridine-imine (API) pincer and its corresponding air-stable
cobalt complexes for highly Markovnikov-selective hydro-
Organometallics 2009, 28, 2360−2362. (c) De Bo, G.; Berthon-Gelloz,
G.; Tinant, B.; Marko, I. E. Organometallics 2006, 25, 1881−1890.
(
d) Itami, K.; Mitsudo, K.; Nishino, A.; Yoshida, J. J. Org. Chem.
silylation of alkynes with primary silane PhSiH . A broad set of
2002, 67, 2645−2652. (e) Gevorgyan, V.; Borisova, L.; Popelis, J.;
Lukevics, E.; Foltynowicz, Z.; Gulinski, J.; Marciniec, B. J. Organomet.
Chem. 1992, 424, 15−22. (f) Lewis, L. N.; Sy, K. G.; Bryant, G. L., Jr.;
Donahue, P. E. Organometallics 1991, 10, 3750−3759. (g) Voronkov,
M. G.; Pukhnarevich, V. B.; Tsykhanskaya, I. I.; Ushakova, N. I.; Gaft,
Y. L.; Zakharova, I. A. Inorg. Chim. Acta 1983, 68, 103−105.
3
alkynes could be efficiently converted to their respective α-
vinylsilanes in good to high yields with excellent regioselectiv-
ities. Various functional groups, including halides, amine,
hydroxyl and nitriles, are well-tolerated. This operationally
simple and atom-economic protocol could be easily scaled-up
for gram-scale synthesis. To the best of our knowledge, this is
the most efficient cobalt catalysis system for the hydrosilylation
of alkyne to date and turnover frequency is as high as 126 720
(
h) Tsipis, C. A. J. Organomet. Chem. 1980, 187, 427−446.
4) (a) Jimenez, M. V.; Perez-Torrente, J. J.; Bartolome, M. I.; Gierz,
V.; Lahoz, F. J.; Oro, L. A. Organometallics 2008, 27, 224−234.
b) Zeng, J. Y.; Hsieh, M.-H.; Lee, H. M. J. Organomet. Chem. 2005,
(
(
−
1
h . Further mechanistic investigations and applications of this
type API pincer are underway in our laboratory and will be
reported in due course.
6
90, 5662−5671. (c) Mas-Marza, E.; Sanau, M.; Peris, E. Inorg. Chem.
2005, 44, 9961−9967. (d) Andavan, G. T. S.; Bauer, E. B.; Letko, C.
S.; Hollis, T. K.; Tham, F. S. J. Organomet. Chem. 2005, 690, 5938−
5947. (e) Sato, A.; Kinoshita, H.; Shinokubo, H.; Oshima, K. Org.
Lett. 2004, 6, 2217−2220. (f) Lee, S. J. L.; Park, M. K. P.; Han, B. H.
H. Silicon Chem. 2002, 1, 41−46. (g) Takeuchi, R.; Nitta, S.;
Watanabe, D. J. Org. Chem. 1995, 60, 3045−3051. (h) Goldberg, Y.;
Alper, H. Tetrahedron Lett. 1995, 36, 369−372.
ASSOCIATED CONTENT
■
*
S
Supporting Information
(
5) (a) Trost, B. M.; Ball, Z. T. J. Am. Chem. Soc. 2005, 127, 17644−
1
7655. (b) Menozzi, C.; Dalko, P. I.; Cossy, J. J. Org. Chem. 2005, 70,
0717−10719. (c) Maifeld, S. V.; Tran, M. N.; Lee, D. Tetrahedron
1
Lett. 2005, 46, 105−108. (d) Trost, B. M.; Machacek, M. R.; Ball, Z.
T. Org. Lett. 2003, 5, 1895−1898. (e) Kawanami, Y.; Sonoda, Y.;
Mori, T.; Yamamoto, K. Org. Lett. 2002, 4, 2825−2827. (f) Trost, B.
M.; Ball, Z. T. J. Am. Chem. Soc. 2001, 123, 12726−12727.
Detailed experimental procedures and spectral data for
all products; experimental details and characterization
D
Org. Lett. XXXX, XXX, XXX−XXX