pubs.acs.org/joc
1
displays as well as in chirotechnology. In this context, the
coronene molecule represents a flat nanosized graphite
fragment of D6h symmetry. With the appropriate functiona-
lization, the coronene derivatives are particularly good
candidates for obtaining discotic liquid-crystalline phases
over a wide temperature range and with high charge car-
Star-Shaped Tetrathiafulvalene-Fused
Coronene with Large π-Extended
Conjugation
†
Hong-Peng Jia, Shi-Xia Liu,* Lionel Sanguinet,*
,†
,‡
‡
Eric Levillain, and Silvio Decurtins
†
2
rier mobilities. However, owing to the limited preparative
accessibility and the lack of an efficient and convenient
synthetic methodology, there have been only a few functio-
†
Departement f u€ r Chemie und Biochemie, Universit a€ t
Bern, Freiestrasse 3, CH-3012 Bern, Switzerland, and
Laboratoire de Chimie et d’Ing eꢀ nierie Mol eꢀ culaire
d’Angers, Universit eꢀ d’Angers-UMR 6200 du CNRS,
3
nalized coronene derivatives reported in the literature. We
‡
present here the 3-fold tetrathiafulvalene (TTF) fused cor-
onene 1 (Scheme 1), which as a combination of TTFs and
coronene represents a novel redox-active, star-shaped and to
a large extent π-conjugated system, displaying a defined D3h
symmetry. By that, the annulated compound 1 exceeds with
its large planar π-conjugated skeleton the size of the hex-
aperihexabenzocoronene (HBC) moiety, which is regarded
2
bd Lavoisier, 49045 Angers 49045 Angers Cedex,
France
liu@iac.unibe.ch; lionel.sanguinet@univ-angers.fr
Received May 20, 2009
1e
as the smallest highly symmetric graphene fragment. Ad-
vantageously, the herein reported synthetic concept easily
allows for additional peripheral solubilizing substituents
which circumvent the dramatic solubility problems occur-
ring with the increased size of nanographenes. Most impor-
tantly, however, the actual annulation process renders the
new compound simultaneously a good multielectron donor
and a strong chromophore.
As is well-known, both components of this merged mole-
cule 1 are widely seen in several functional molecular materi-
als. The TTFs, as strong π-donors, are main components4
in the field of organic conductors and superconductors.
Moreover, they have frequently been used in the construc-
tion of a large variety of donor-acceptor (D-A) systems
showing photoinduced electron or energy transfer pro-
5
cesses, further leading to long-lived charge-separated states.
(1) (a) Mynar, J. L.; Yamamoto, T.; Kosaka, A.; Fukushima, T.; Ishii,
N.; Aida, T. J. Am. Chem. Soc. 2008, 130, 1530. (b) Yamamoto, T.;
Fukushima, T.; Kosaka, A.; Jin, W.; Yamamoto, Y.; Ishii, N.; Aida, T.
Angew. Chem., Int. Ed. 2008, 47, 1672. (c) Carbon-Rich Compounds; Haley,
M. M., Tykwinski, R. R., Eds.; Wiley-VCH, Verlag GmbH and Co., KGaA:
Weinheim, Germany, 2006. (d) Anthony, J. E. Angew. Chem., Int. Ed. 2008,
4
7, 452. (e) Hill, J. P.; Jin, W.; Kosaka, A.; Fukushima, T.; Ichihara, H.;
Shimomura, T.; Ito, K.; Hashizume, T.; Shimomura, T.; Ito, K.; Hashizume,
T.; Ishii, N.; Aida, T. Science 2004, 304, 1481.
(2) (a) van de Craats, A. M.; Warman, J. M.; Fechtenk o€ tter, A.; Brand,
J. D.; Harbison, M. A.; M u€ llen, K. Adv. Mater. 1999, 11, 1469. (b) Palermo,
V.; Morelli, S.; Simpson, C.; M u€ llen, K.; Samori, P. J. Mater. Chem. 2006, 16,
A tristar shaped, planar TTF-fused coronene 1 was
synthesized. Its electronic properties have been studied
experimentally by the combination of electrochemis-
try and UV-vis-NIR spectroscopy. Thereby, a nano-
sized graphite fragment is largely extended in its size,
supplemented with a multielectron donor functiona-
lity, and shaped to a strongly chromophoric species
absorbing intensely in the visible part of the optical
spectrum.
2
66. (c) Xiao, S.; Tang, J.; Beetz, T.; Guo, X.; Tremblay, N.; Siegrist, T.; Zhu,
Y.; Steigerwald, M.; Nuckolls, C. J. Am. Chem. Soc. 2006, 128, 10700.
3) (a) Alibert-Fouet, S.; Seguy, I.; Bobo, J.-F.; Destruel, P.; Bock, H.
(
Chem.;Eur. J. 2007, 13, 1746. (b) Shen, H. C.; Tang, J. M.; Chang, H. K.;
Yang, C. W.; Liu, R. S. J. Org. Chem. 2005, 70, 10113. (c) Rieger, R.; Kastler,
M.; Enkelmann, V.; M u€ llen, K. Chem.;Eur. J. 2008, 14, 6322.
´
(4) (a) Segura, J. L.; Martın, N. Angew. Chem., Int. Ed. 2001, 40, 1372.
(b) Yamada, J.; Sugimoto, T. TTF Chemistry. Fundamentals and applica-
tions of Tetrathiafulvalene; Springer: Berlin, Germany, 2004.
(
5) (a) Bendikov, M.; Wudl, F.; Perepichka, D. F. Chem. Rev. 2004, 104,
891. (b) Dıaz, M. C.; Illescas, B. M.; Martın, N.; Perepichka, I. F.; Bryce, M.
R.; Levillain, E.; Viruela, R.; Ortı, E. Chem.;Eur. J. 2006, 12, 2709. (c) Wu,
J.-C.; Liu, S.-X.; Neels, A.; Le Derf, F.; Sall ꢀe , M.; Decurtins, S. Tetrahedron
007, 63, 11282. (d) Goze, C.; Leiggener, C.; Liu, S.-X.; Sanguinet, L.;
Levillain, E.; Hauser, A.; Decurtins, S. ChemPhysChem 2007, 8, 1504.
(e) Guldi, D. M.; Giacalone, F.; de la Torre, G.; Segura, J. L.; Martin, N.
´
Chem.;Eur. J. 2005, 11, 7199. (f) Giacalone, F.; Segura, J. L.; Martın, N.;
Guldi, D. M. J. Am. Chem. Soc. 2004, 126, 5340. (g) Wielopolski, M.;
Atienza, C.; Clark, T.; Guldi, D. M.; Martın, N. Chem.;Eur. J. 2008, 14,
´
4
´
´
´
Polycyclic aromatic hydrocarbons are of immense impor-
tance due to their unique electronic properties and propen-
sity to form self-assembled graphitic nanostructures or
columnar assemblies, thereby leading to potential applica-
tions in a variety of (opto)electronic devices such as field
effect transistors, photovoltaic cells, and electroluminescent
2
6379.
DOI: 10.1021/jo901054b
r 2009 American Chemical Society
Published on Web 06/11/2009
J. Org. Chem. 2009, 74, 5727–5729 5727