Q.-L. Wang et al. / Tetrahedron Letters 50 (2009) 29–31
31
toward Cu2+. As a consequence, the fluorescent response rate
would decrease by a factor of ca. 0.33 when Cu2+ concentration de-
creased from 1.0 Â 10À6 M to 0.5 Â 10À6 M (cf. Fig. S6). In compe-
tition experiments, however, it was found that the fluorescent
response rate of 3 toward 1 equiv of Cu2+ was not affected by
2 equiv of 1 (Fig. S7). These observations indicated that 3 bound
more strongly toward Cu2+ than 1, likely due to more binding sites
in 3. This means that indeed Cu2+ could re-interact with 3 after
decomposition of a previous molecule of 3, hence less than stoichi-
ometric amount of Cu2+ being able to decompose 3 into 1. Although
it is still unable to get the real stoichiometry of 3 toward Cu2+, 20
turnovers of hydrolysis were observed assuming a 1:1 stoichiome-
try of 3-Cu2+ complex (Fig. S8). Compound 3 was therefore con-
cluded a catalytic chemodosimeter, capable of accumulating and
V.; Andreopoulos, F. M.; Pham, S. M.; Leblanc, R. M. Anal. Chem. 2003, 75, 1706–
1712.
3. (a) Varnes, A. W.; Dodson, R. B.; Wehry, E. L. J. Am. Chem. Soc. 1972, 94, 946–
950; (b) Prodi, L.; Bolletta, F.; Montaldi, M.; Zaccheroni, N. Eur. J. Inorg. Chem.
1999, 455–460; (c) Mokhir, A.; Kiel, A.; Herten, D. P.; Kraemer, R. Inorg. Chem.
2005, 44, 5661–5666; (d) Guo, Z. Q.; Zhu, W. H.; Shen, L. J.; Tian, H. Angew.
Chem., Int. Ed. 2007, 46, 5549–5553; (e) Huang, X. M.; Guo, Z. Q.; Zhu, W. H.;
Xie, Y. S.; Tian, H., Chem. Commun., 2008. doi: 10.1039/B809983A.
4. (a) Ramachandram, B.; Saroja, G.; Sankaran, N. B.; Samanta, A. J. Phys. Chem. B
2000, 104, 11824–11832; (b) Rurack, K.; Kollmannsberger, M.; Resch-Genger,
U.; Daub, J. J. Am. Chem. Soc. 2000, 122, 968–969; (c) Zhang, H.; Han, L.-F.;
Zachariasse, K. A.; Jiang, Y.-B. Org. Lett. 2005, 7, 4217–4220; (d) Martinez, R.;
Zapata, F.; Caballero, A.; Espinosa, A.; Tairraga, A.; Molina, P. Org. Lett. 2006, 8,
3235–3238.
5. (a) Kaur, S.; Kumar, S. Chem. Commun. 2002, 2840–2841; (b) Wu, Q.; Anslyn, E.
V. J. Am. Chem. Soc. 2004, 126, 14682–14683; (c) Xu, Z.-C.; Xiao, Y.; Qian, X.-H.;
Cui, J.-N.; Cui, D.-W. Org. Lett. 2005, 7, 889–892; (d) Xu, Z.-C.; Qian, X.-H.; Cui, J.-
N. Org. Lett. 2005, 7, 3029–3032; (e) Wen, Z.-C.; Yang, R.; He, H.; Jiang, Y.-B.
Chem. Commun. 2006, 106–108; (f) Martínez, R.; Zapata, F.; Caballero, A.;
Espinosa, A.; Tárraga, A.; Molina, P. Org. Lett. 2006, 8, 3235–3238; (g) Kim, H. J.;
Hong, J.; Hong, A.; Ham, S.; Lee, J. H.; Kim, J. S. Org. Lett. 2008, 10, 1963–1966;
(h) Martínez, R.; Espinosa, Al.; Tárraga, A.; Molina, P. Tetrahedron 2008, 64,
2184–2191.
6. (a) Dujols, V.; Ford, F.; Czarnik, A. W. J. Am. Chem. Soc. 1997, 119, 7386–7387;
(b) Royzen, M.; Dai, Z.; Canary, J. W. J. Am. Chem. Soc. 2005, 127, 1612–1613; (c)
Kierat, R. M.; Krämer, R. Bioorg. Med. Chem. Lett. 2005, 15, 4824–4827; (d)
Singhal, N. K.; Ramanujam, B.; Mariappanadar, V.; Rao, C. P. Org. Lett. 2006, 8,
3525–3528; (e) Kovács, J.; Rödler, T.; Mokhir, A. Angew. Chem., Int. Ed 2006, 45,
7815–7817; (f) Kamila, S.; Callan, J. F.; Mulrooney, R. C.; Middleton, M.
Tetrahedron Lett. 2007, 48, 7756–7760; (g) Liu, J.; Lu, Y. J. Am. Chem. Soc. 2007,
129, 9838–9839; (h) Kovács, J.; Mokhir, A. Inorg. Chem. 2008, 47, 1880–1882.
7. (a) Florio, G. M.; Longarte, A.; Zwier, T. S. J. Phys. Chem. A 2003, 107, 4032–4040;
(b) Anumula, K. R. Anal. Biochem. 2006, 350, 1–23.
8. (a) Harris, R. K.; Jackson, P. J. Phys. Chem. Solids 1987, 48, 813–818; (b) Lu, T. H.;
Chattopadhyay, P.; Liao, F. L.; Lo, J. M. Anal. Sci. 2001, 17, 905–906.
9. Ito, A. S.; Turchiello, R. F.; Hirata, I. Y.; Cezari, M. H. S.; Meldal, M.; Juliano, L.
Biospectroscopy 1998, 4, 395–402.
10. (a) Martell, A. E.; Herbst, R. M. J. Org. Chem. 1941, 6, 878–882; (b) Drisko, R. W.;
McKennis, H. J. Am. Chem. Soc. 1951, 74, 2626–2628; (c) Cui, Y.; Ni, Y. Synth.
Commun. 2001, 31, 257–261.
11. For a general review on the chemistry of Stenhouse salts including reversibility
in their formation, see: (a) Lewis, K. G.; Mulquiney, C. E. Tetrahedron 1977, 33,
463–475; (b) Hofmann, T. J. Agric. Food Chem. 1998, 46, 932–940; (c) Li, S.-W.;
Batey, R. A. Chem. Commun. 2007, 3759–3761.
12. (a) Mei, X.; August, A. T.; Wolf, C. J. Org. Chem. 2006, 71, 142–149; (b) Wolf, C.;
Liu, S.; Mei, X.; August, A. T.; Casimir, M. D. J. Org. Chem. 2006, 71, 3270–
3273.
amplifying the signal in response to Cu .
2+ 6h We noted that the fluo-
rescence of 1 was not quenched by Cu2+ under the tested Cu2+ con-
centration (Fig. S9), which explained the observed fluorescence
enhancement of 3 even at high Cu2+ concentration.
In summary, 3 was developed as a highly selective and sensitive
catalytic chemodosimeter for naked-eye and turn-on fluorescent
detections of Cu2+ in pure aqueous solution with a detection limit
of 1 ppb. Fluorescence of aqueous solution of 3 was found substan-
tially enhanced by Cu2+, which was shown to result from a metal-
coordination promoted decomposition of 3 into highly fluorescent
1. Compound 3 therefore represents a new kind of ‘turn-on’ fluo-
rescent chemodosimeter for Cu2+ 6a
Other structural motifs on
.
amine substitution are in general possible to allow for extended
applications of the reported strategy in constructing chemodosi-
meters for supramolecular analytical chemistry.15
Acknowledgments
This work was supported by NSFC through Grants Nos.
20425518, 20675069, and 20835005.
Supplementary data
13. Compound 3 was synthesized by stirring furan-2-carbaldehyde (0.173 mL,
0.18 mmol) and 1 (0.5 g, 0.36 mmol) in 15 mL ethanol at room temperature for
24 h. After filtration and washing with diethyl ether, 3 was obtained as a
yellow solid (0.63 g, yield 85%). 1H NMR (400 MHz, DMSO-d6), d (ppm): 4.51–
4.54 (ddd, J = 3.5, 3.7 and 3.5 Hz, 1H), 4.94–4.96 (m, 1H), 6.49 (dd, J = 1.7 and
J = 4.4 Hz, 1H), 6.56–6.63 (m, 2H), 6.73 (d, J = 8.5 Hz, 1H), 6.92 (d, J = 8.4 Hz,
1H), 7.17–7.21 (m, 1H), 7.26–7.31 (m, 1H), 7.74 (dd, J = 1.8 and J = 4.3 Hz, 1H),
7.78–7.84 (m, 2H), 8.31–8.34 (m, 2H), 12.76 (s, 2H); 13C NMR (100 MHz,
DMSO-d6), d (ppm): 59.46, 65.26, 111.32, 111.41, 112.55, 112.82, 115.79,
115.96, 132.12, 132.28, 132.84, 134.63, 134.96, 150.08, 150.66, 161.21, 170.30,
170.42, 203.47. HRMS, calcd. for (M+H)+ m/z 353.1132, found 353.1137.
Supplementary data (synthesis of 3, absorption spectra of 3 in
the presence of metal ions, and optimal conditions for fluorescence
assays) associated with this article can be found, in the online ver-
References and notes
1. (a) Linder, M. C.; Hazegh-Azam, M. Am. J. Clin. Nutr. 1996, 63, 797S–811S; (b)
Uauy, R.; Olivares, M.; Gonzalez, M. Am. J. Clin. Nutr. 1998, 67, 952S–959S.
2. (a) Fabrizzi, L.; Licchelli, M.; Pallavicini, P.; Perotti, A.; Sacchi, D. Angew. Chem.,
Int. Ed. Engl. 1994, 33, 1975–1977; (b) Torrado, A.; Walkup, G. K.; Imperiali, B. J.
Am. Chem. Soc. 1998, 120, 609–610; (c) Li, Y.; Yang, C. M. Chem. Commun. 2003,
2884–2885; (d) Brasola, E.; Mancin, F.; Rampazzo, E.; Tecilla, P.; Tonellato, U.
Chem. Commun. 2003, 3026–3027; (e) Zheng, Y.; Cao, X.; Orbulescu, J.; Konka,
14. Detection limit is defined by 3r/k. Here r and k refer to standard deviation of
the blank solutions and the slope of linear regression curve observed in Fig. S4,
respectively, see: (a) Ono, A.; Togashi, H. Angew. Chem., Int. Ed. 2004, 43, 4300–
4302; (b) Liu, J.; Lu, Y. Angew. Chem., Int. Ed. 2007, 46, 7587–
7590.
15. Anslyn, E. V. J. Org. Chem. 2007, 72, 687–699.