Merkel et al.
JOCFeatured Article
of radical ions. In addition, they provide critical bench-
mark values for testing recent quantum chemical approaches
3
d
where Keq is the electron-transfer equilibrium constant and
k1 and k are the forward and reverse electron-transfer rate
-1
4
for predicting redox potentials in solution.
constants, respectively. Under conditions where the decay of
•
þ •þ
and BP are slow relative to k [BP] and k [B], an
1 -1
For compounds that form reactive radical cations upon
one-electron oxidation, the most common cyclic voltam-
metric (CV) methods for determining oxidation potentials
often fail to provide reversible voltammograms. In part for
this reason, a wide range of oxidation potentials can fre-
quently be found in the literature. For example, literature
oxidation potentials for the fundamental hydrocarbon ben-
B
equilibrium is effectively established (see the Supporting
Information) involving the radical cations and their unox-
idized forms. The difference in the oxidation potentials of BP
and B, E (BP) - E (B), can be determined from eq 2. This
analysis makes the conventional assumption that concentra-
tions can be used in place of activity coefficients. Thus, the
ΔEox values derived from the redox equilibrium measure-
ments are strictly differences in formal potentials, rather
than standard potentials. We note, however, that the neglect
of activity coefficients should be inconsequential in the
examples studied herein because the ionic strength of the
medium is particularly low (∼1 mM) and because the activity
coefficients of the species on both sides of the equilibrium in
eq 1a are expected to be quite similar.
ox
ox
5
zene vary from 2.26 to 2.82 V vs SCE in acetonitrile -a range
of nearly 13 kcal/mol! The range of literature oxidation
potentials for toluene (1.98-2.40 V) is only marginally
5
a-c,5k,5m,6
better.
and fast scan potentiostats allows redox potentials to be
measured for radical ions with lifetimes in the nanosecond
In principle, the use of microelectrodes
7
8
range. In practice, slow heterogeneous electron transfer at
the electrode for molecules like benzene and toluene do not
permit the full advantage of fast scan CV techniques to be
realized.
Herein, we utilize nanosecond transient absorption spec-
9
troscopy to monitor the electron-transfer equilibrium
established between the radical cation of a reference com-
pound of known oxidation potential and an electron donor
of unknown oxidation potential to determine thermodyna-
mically meaningful oxidation potentials for a range of
biphenyl (BP) and benzene derivatives (B), including ben-
zene and toluene. The methodology is illustrated for the case
in which a BP derivative serves as the reference compound
and a B derivative is the compound whose oxidation poten-
tial is to be measured by using the redox equilibrium in eq 1,
k1
BP þ B þ h BP þ B
•
•þ
ð1aÞ
ð1bÞ
k-1
,10
Keq ¼ k1=k-1
EoxðBPÞ -EoxðBÞ ¼ -RT ln Keq ¼ -0:0255 ln Keq ð2Þ
Although the redox equilibrium method has the virtue that
it can provide oxidation potentials with extraordinary accu-
racy and precision, it also has some limitations. First, as
mentioned above, the method requires that the decay of
intermediate radical cations be slow relative to the electron
exchange in eq 1a. Second, reliable equilibrium constants can
only be determined for donor and reference compounds
whose oxidation potentials are relatively similar. For exam-
(
4) For recent attempts to calculate oxidation potentials, see: (a) Winget,
P.; Weber, E. J.; Cramer, C. J.; Truhlar, D. G. Phys. Chem. Chem. Phys. 2000,
, 1231. (b) Baik, M.-H.; Friesner, R. A. J. Phys. Chem. A 2002, 106, 7407. (c)
Han, Y.-K.; Jung, J.; Cho, J.-J.; Kim, H.-J. Chem. Phys. Lett. 2003, 368, 601.
d) Fu, Y.; Liu, L.; Yu, H.-Z.; Wang, Y.-M.; Guo, Q.-X. J. Am. Chem. Soc.
2
ple, a ΔEox of only 200 mV corresponds to K >2000, which
eq
is generally too difficult to accurately determine. As we will
show, when these conditions are not met the electron-trans-
fer equilibrium constant can instead be reliably determined
by kinetic approaches that directly measure the rate con-
(
2
2
005, 127, 7227. (e) Yu, A.; Liu, Y.; Li, Z.; Cheng, J.-P. J. Phys. Chem. A
007, 111, 9978. (f) Singh, N. K.; Shaik, M. S.; O’Malley, P. J.; Popelier, P. L.
A. Org. Biomol. Chem. 2007, 5, 1739. (g) Riahi, S.; Norouzi, P.; Bayandori
Moghaddam, A.; Ganjali, M. R.; Karimipour, G. R.; Sharghi, H. Chem.
Phys. 2007, 337, 33. (h) Alizadeh, K.; Seyyedi, S.; Shamsipur, M. Pol. J.
Chem. 2008, 82, 1449.
1
1
stants for electron exchange (k and k ).
1
-1
(
5) (a) Lund, H. Acta Chem. Scand. 1957, 11, 1323. (b) Loveland, J. W.;
2
. Results
We begin by describing the spectral characterization of
Dimeler, G. R. Anal. Chem. 1961, 33, 1196. (c) Pysh, E. S.; Yang, N. C. J. Am.
Chem. Soc. 1963, 85, 2124. (d) Neikam, W. C.; Desmond, M. M. J. Am.
Chem. Soc. 1964, 86, 4811. (e) Gough, T. A.; Peover, M. E. Proceedings of the
3
rd International Polarography Congress, Southhampton, 1965; Macmillan:
benzene and biphenyl radical cations in terms of their
extinction coefficients at their absorption maxima (λmax).
The spectral data are then used to determine ΔEox for
electron-transfer equilibria between different electron do-
nors and their radical cations. Finally, for cases where the
equilibrium method is difficult to apply, transient kinetics
are used to determine the individual rate constants for
electron-transfer equilibration and, thereby, Keq and ΔEox
values.
London, 1966; p 1017. (f) Hansen, R. L.; Toren, P. E.; Young, R. H. J. Phys.
Chem. 1966, 70, 1653. (g) Hoytink, G. J. Disc. Faraday Soc. 1968, 45, 14. (h)
Osa, T.; Yildiz, A.; Kuwana, T. J. Am. Chem. Soc. 1969, 91, 3994. (i) Parker, V. D.
J. Am. Chem. Soc. 1976, 98, 98. (j) Tanimoto, I.; Kushioka, K.; Kitagawa, T.;
Maruyama, K. Bull. Chem. Soc. Jpn. 1979, 52, 3586. (k) Howell, J. O.;
Goncalves, J. M.; Amatore, C.; Klasinc, L.; Wightman, R. M.; Kochi, J. K. J.
Am. Chem. Soc. 1984, 106, 3968. (l) Butin, K. P.; Moiseeva, A. A.; Magdesieva,
T. V.; Sergeeva, E. V.; Rozenberg, V. I.; Kharitonov, V. G. Russ. Chem. Bull. 1994,
4
3, 783. (m) Fukuzumi, S.; Ohkubo, K.; Suenobu, T.; Kato, K.; Fujitsuka, M.; Ito,
O. J. Am. Chem. Soc. 2001, 123, 8459.
6) Neikam, W. C.; Dimeler, G. R.; Desmond, M. M. J. Electrochem.
Soc. 1964, 111, 1190.
7) (a) Wightman, R. M.; Wipf, D. O. Electroanal. Chem. 1989, 15, 267.
b) Andrieux, C. P.; Hapiot, P.; Saveant, J.-M. Chem. Rev. 1990, 90, 723. (c)
(
2
.1. Radical Cation Spectra and Extinction Coefficients.
(
•
þ
(
Radical cation extinction coefficients (ε ) were obtained for
most electron donors by comparing transient absorption
spectra obtained by pulsed laser (7 ns, 343 nm) irradiation
of air-saturated acetonitrile solutions containing 1 mM
Heinze, J. Angew. Chem., Int. Ed. Engl. 1993, 32, 1268. (d) Amatore, C.;
Bouret, Y.; Maisonhaute, E.; Abruna, H. D.; Goldsmith, J. I. C. R. Chim.
2
003, 6, 99.
(8) Amatore, C.; Maisonhaute, E.; Simmoneau, G. J. Electroanal. Chem.
000, 486, 141.
2
þ
N-methylquinolinium hexafluorophosphate (NMQ ), to-
luene (0.5 M), and either a BP or a B derivative (∼10 mM).
(
9) For reviews, see: (a) Steenken, S. Landolt-B o€ rnstein 1985, 13e, 147. (b)
Wardman, P. J. Phys. Chem. Ref. Data 1989, 18, 1637. (c) Stanbury, D. M.
In General Aspects of the Chemistry of Radicals; Alfassi, Z. B., Ed.; Wiley: New
York, 1999; Chapter 11.
(
10) Guirado, G.; Fleming, C. N.; Lingenfelter, T. G.; Williams, M. L.;
(11) Gould, I. R.; Wosinska, Z. M.; Farid, S. Photochem. Photobiol.
2006, 82, 104.
Zuilhof, H.; Dinnocenzo, J. P. J. Am. Chem. Soc. 2004, 126, 14086.
5
164 J. Org. Chem. Vol. 74, No. 15, 2009