Journal of the American Chemical Society
,2-migration of the amino group. Second, the results further
Communication
1
REFERENCES
■
substantiate the hypothesis that an increase in oxidation potential
of the substrate radical is required for oxidation, since the
ionization energy of a fluoromethyl radical is approximately 1 eV
(
1) (a) Frey, P. A.; Hegeman, A. D.; Ruzicka, F. J. Crit. Rev. Biochem.
Mol. Biol. 2008, 43, 63−88. (b) Broderick, J. B.; Duffus, B. R.; Duschene,
K. S.; Shepard, E. M. Chem. Rev. 2014, 114, 4229−4317.
(2) Xue, Y.; Zhao, L.; Liu, H.-w.; Sherman, D. H. Proc. Natl. Acad. Sci.
U.S.A. 1998, 95, 12111−12116.
3) Szu, P.-h.; He, X.; Zhao, L.; Liu, H.-w. Angew. Chem., Int. Ed. 2005,
4, 6742−6746.
4) Zhao, L.; Borisova, S.; Yeung, S.-M.; Liu, H.-w. J. Am. Chem. Soc.
2001, 123, 7909−7910.
5) Ruszczycky, M. W.; Ogasawara, Y.; Liu, H.-w. Biochim. Biophys.
Acta 2012, 1824, 1231−1244.
6) Szu, P.-H.; Ruszczycky, M. W.; Choi, S.-h.; Yan, F.; Liu, H.-w. J. Am.
1
7,25
greater than that of a hydroxymethyl radical.
Third, the
apparent equilibration of deuterium between the 3-fluoro
analogues and SAM indicates that reductive homolysis of SAM
and H atom abstraction from the substrate are readily reversible.
Previous reports have provided evidence for this possibility
(
4
(
6
,26,27
under turnover conditions,
and enzymes such as lysine
(
2
8
29 30
amino mutase, spore photoproduct lyase, and QueE are
well-known to regenerate SAM as part of their catalytic cycles.
However, the present results suggest that the reverse partitioning
of the substrate radical, methionine, and 5′-deoxyadenosine to
regenerate SAM and the substrate (i.e., 7 → 1) can become the
dominant course of the reaction when forward partitioning (i.e.,
(
Chem. Soc. 2009, 131, 14030−14042.
(7) Bandarian, V.; Reed, G. H. In Chemistry and Biochemistry of B ;
1
2
Banerjee, R., Ed.; John Wiley & Sons: New York, 1999; pp 811−833.
8) Craciun, S.; Marks, J. A.; Balskus, E. P. ACS Chem. Biol. 2014, 9,
(
1
(
(
(
8
(
1
408−1413.
7
→ 8, 11, or 12) is impeded.
Taken together, these results indicate that the mechanism of
9) Toraya, T. Chem. Rev. 2003, 103, 2095−2127.
10) Toraya, T. Arch. Biochem. Biophys. 2014, 544, 40−57.
11) Semialjac, M.; Schwarz, H. J. Am. Chem. Soc. 2002, 124, 8974−
the DesII-catalyzed deamination reaction appears to be most
consistent with that shown in Scheme 3. Upon formation of the
ternary Michaelis complex between DesII, SAM, and 1, SAM is
reduced concomitant with C3-hydrogen atom abstraction from
the substrate to produce the initial substrate radical 7. This
process is reversible, and the 5′-deoxyadenosyl or substrate
radical may also be quenched unproductively to result in
uncoupling, sulfinate formation, or C3-epimerization. However,
these latter pathways are relatively minor in the case of DesII
unless the substrate exhibits significant structural perturba-
983.
12) Ruszczycky, M. W.; Choi, S.-h.; Liu, H.-w. J. Am. Chem. Soc. 2010,
32, 2359−2369.
(13) Ruszczycky, M. W.; Choi, S.-h.; Liu, H.-w. Proc. Natl. Acad. Sci.
U.S.A. 2013, 110, 2088−2093.
(14) Ruszczycky, M. W.; Choi, S.-h.; Mansoorabadi, S. O.; Liu, H.-w. J.
Am. Chem. Soc. 2011, 133, 7292−7295.
15) (a) Steenken, S.; Davies, M. J.; Gilbert, B. C. J. Chem. Soc., Perkin
Trans. 2 1986, 1003−1010. (b) Steenken, S. J. Phys. Chem. 1979, 83,
595−599. (c) Bansal, K. M.; Gratzel, M.; Henglein, A.; Janata, E. J. Phys.
(
2
1
̈
tions.
Chem. 1973, 77, 16−19.
The subsequent reaction of 7 depends on the presence of an
ionizable hydroxyl group at C3, since radical-induced deami-
nation of 5 does not take place. Instead, deamination likely
proceeds via a mechanism of direct elimination wherein the
proton from the C3 α-hydroxyalkyl radical is transferred to the
amine leaving group at C4 (i.e., 7 → 12). This may be mediated
by the putative active-site base and likely proceeds in a concerted
manner to avoid possible dehydrogenation due to the formation
(
(
(
16) Ruszczycky, M. W.; Liu, H.-w. Isr. J. Chem. 2015, 55, 1−11.
17) Dolbier, W. R., Jr. Chem. Rev. 1996, 96, 1557−1584.
18) Bundle, D. R.; Gerken, M.; Peters, T. Carbohydr. Res. 1988, 174,
239−251.
(19) Peters, T.; Bundle, D. R. Can. J. Chem. 1989, 67, 497−502.
́ ̌
(20) Poirot, E.; Chang, A. H. C.; Horton, D.; Kovac, P. Carbohydr. Res.
2001, 334, 195−205.
21) Ko, Y.; Ruszczycky, M. W.; Choi, S.-H.; Liu, H.-w. Angew. Chem.,
(
13
Int. Ed. 2015, 54, 860−863.
of a ketyl radical (i.e., 11) as a discrete intermediate. The
(
(
(
(
9
22) Bordwell, F. G.; Zhang, X.-M. Acc. Chem. Res. 1993, 26, 510−517.
23) (a) Iwig, D. F.; Booker, S. J. Biochemistry 2004, 43, 13496−13509.
b) Hoffman, J. L. Biochemistry 1986, 25, 4444−4449.
24) (a) Hartshorn, S. R.; Shiner, V. J., Jr. J. Am. Chem. Soc. 1972, 94,
002−9012. (b) Venkatasubban, K. S.; Schowen, R. L. CRC Crit. Rev.
Biochem. 1984, 17, 1−44.
25) Dyke, J. M.; Ellis, A. R.; Jonathan, N.; Keddar, N.; Morris, A.
Chem. Phys. Lett. 1984, 111, 207−210.
26) Yokoyama, K.; Numakura, M.; Kudo, F.; Ohmori, D.; Eguchi, T. J.
catalytic cycle is then completed upon reduction of enol radical
1
2 by an external electron donor in a process that has yet to be
clarified. Overall, the use of C3-fluoro analogues to investigate
the DesII reaction has shed significant light on its mechanism of
catalysis and radical SAM enzymes in general.
(
ASSOCIATED CONTENT
■
(
*
S
Supporting Information
Am. Chem. Soc. 2007, 129, 15147−15155.
Synthetic procedures, enzyme assays, and spectroscopic
(27) Duffus, B. R.; Ghose, S.; Peters, J. W.; Broderick, J. B. J. Am. Chem.
Soc. 2014, 136, 13086−13089.
28) (a) Chirpich, T. P.; Zappia, V.; Costilow, R. N.; Barker, H. A. J.
(
Biol. Chem. 1970, 245, 1778−1789. (b) Moss, M.; Frey, P. A. J. Biol.
Chem. 1987, 262, 14859−14862. (c) Baraniak, J.; Moss, M. L.; Frey, P.
A. J. Biol. Chem. 1989, 264, 1357−1360.
AUTHOR INFORMATION
(29) (a) Cheek, J.; Broderick, J. B. J. Am. Chem. Soc. 2002, 124, 2860−
2
2
(
861. (b) Buis, J. M.; Cheek, J.; Kalliri, E.; Broderick, J. B. J. Biol. Chem.
006, 281, 25994−26003.
Notes
30) McCarty, R. M.; Krebs, C.; Bandarian, V. Biochemistry 2013, 52,
The authors declare no competing financial interest.
188−198.
ACKNOWLEDGMENTS
■
We dedicate this paper to Prof. Koji Nakanishi on the occasion of
his 90th birthday. This work was supported by grants from the
National Institutes of Health (GM035906) and the Welch
Foundation (F-1511).
D
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX