Fig. 4 Cyclisation of 3 over Al- and Zr-TUD-1 catalysts. Reaction
conditions: 4 mmol 3, 5 g toluene, 80 1C, 50 mg catalyst. (J) Zr-
TUD-1, (ꢂ) Al-TUD-1, (’) Al-Zr-1: 3-TUD-1, (E) Al-Zr-2 : 2-TUD-1
and (m) Al-Zr-3 : 1-TUD-1.
Stimulating discussions with Prof. Bert Weckhuysen (Univer-
siteit Utrecht) are gratefully acknowledged.
Notes and references
1 R. A. Sheldon, I. W. C. E. Arends and U. Hanefeld, Green
Chemistry and Catalysis, Wiley-VCH, Weinheim, 2007.
2 Fine Chemicals through Heterogeneous Catalysis, ed. R. A. Sheldon
and H. van Bekkum, Wiley-VCH, Weinheim, 2001.
3 Y. Wan and D. Zhao, Chem. Rev., 2007, 107, 2821–2860.
4 S. Li, A. Zheng, Y. Su, H. Zhang, L. Chen, J. Yang, C. Ye and F.
Deng, J. Am. Chem. Soc., 2007, 129, 11161–11171.
5 M. Boronat, A. Corma and M. Renz, J. Phys. Chem. B, 2006, 110,
21168–21174.
Fig. 3 Reduction of 1 over Al- and Zr-TUD-1 catalysts. Reaction
conditions: 2 mmol 1, 4 ml isopropanol, 80 1C, 50 or 100 mg catalyst.
A: K Al-TUD-1 (50 mg), ’ Zr-TUD-1 (50 mg), J Al-Zr-2 : 2-TUD-1
(50 mg), . Al-TUD-1 (25 mg) and Zr-TUD-1 (25 mg), n Al-TUD-1
(50 mg) and Zr-TUD-1 (50 mg); B: . Al-Zr-3 : 1-TUD-1 (50 mg), ’
Al-Zr-2 : 2-TUD-1 (50 mg), K Al-Zr-1 : 3-TUD-1 (50 mg).
6 Y. Zhu, G. Chuah and S. Jaenicke, J. Catal., 2004, 227, 1–10.
7 B. Rakshe, V. Ramaswamy and A. V. Ramaswamy, J. Catal.,
1999, 188, 252–260.
8 I. Eswaramoorthi, V. Sundaramurthy and N. Lingappan, Micro-
porous Mesoporous Mater., 2004, 71, 109–115.
9 C. Simons, U. Hanefeld, I. W. C. E. Arends, R. A. Sheldon and T.
Maschmeyer, Chem.–Eur. J., 2004, 10, 5829–5835.
10 R. Anand, R. Maheswari and U. Hanefeld, J. Catal., 2006, 242,
82–91.
11 A. Ramanathan, D. Klomp, J. A. Peters and U. Hanefeld, J. Mol.
Catal. A: Chem., 2006, 260, 62–69.
12 A. Ramanathan, M. C. Castro Villalobos, C. Kwakernaak, S.
Telalovic and U. Hanefeld, Chem.–Eur. J., 2008, 14, 961–972.
13 G. K. Chuah, S. Jaenicke, Y. Z. Zhu and S. H. Liu, Curr. Org.
Chem., 2006, 10, 1639–1654.
conditions, this Brønsted acid catalysed reaction was per-
formed with Zr-TUD-1, Al-TUD-1, Al-Zr-3 : 1-TUD-1,
Al-Zr-2 : 2-TUD-1 and Al-Zr-1 : 3-TUD-1 (Fig. 4). Zr-TUD-
1 had the lowest activity, while Al-TUD-1 displayed signifi-
cantly higher activity. Remarkably, the activities of all Al-Zr-
TUD-1s were higher than that of either Zr-TUD-1 or
Al-TUD-1. As the metal concentration in the mixed Al-Zr-
TUD-1s is the same as in either Zr-TUD-1 or Al-TUD-1 and
given the fact that the overall acidity is virtually identical to
Al-TUD-1 and lower than Zr-TUD-1 this is unambiguous
proof of synergy between the Al induced Brønsted acid sites
and the Zr induced Lewis acid sites.
14 D. Klomp, T. Maschmeyer, U. Hanefeld and J. A. Peters,
Chem.–Eur. J., 2004, 10, 2088–2093.
15 D. Klomp, J. A. Peters and U. Hanefeld, Transfer hydrogenation
including the Meerwein–Ponndorf–Verley reduction, in Handbook
of Homogeneous Hydrogenation, ed. J. G. de Vries and C. J.
Elsevier, Wiley, Weinheim, 2007, ch. 20, vol. 3, pp. 585–630.
16 H. J. Prins, Chem. Weekbl., 1917, 14, 932–939.
17 H. J. Prins, Chem. Weekbl., 1917, 14, 627–630.
18 Y. Z. Zhu, Y. T. Nie, S. Jaenicke and G.-K. Chuah, J. Catal., 2005,
229, 404–413.
In conclusion, mixed Al-Zr-TUD-1 samples clearly demon-
strate synergy for the Brønsted acid catalysed Prins cyclisation
of 3. In contrast, no synergy was observed in the Lewis acid
catalysed MPV reduction of 1.
The authors thank Dr P. Kooyman of DCT/NCHREM,
TU Delft, for the electron microscopy investigations. ST
thanks NWO (Mozaıek fellowship) for financial support.
19 J. El Haskouri, S. Cabrera, C. Guillem, J. Latorre, A. Beltran, D.
Beltran, M. D. Marcos and P. Amoros, Chem. Mater., 2002, 14,
5015–5022.
ꢀc
This journal is The Royal Society of Chemistry 2008
Chem. Commun., 2008, 4631–4633 | 4633