128
LETTERS
SYNLETT
To prepare the rhamno-isomer (12) from compound 2, its
isopropylidene group was hydrolyzed, then the free ulose-derivative (7)
3.36 (bs, 2H, 2 x OH), 3.28 (s, 1H, H-2), 2.89 (s, 1H, H-4), 1.32
13
(s, 3H, CH (3)), 1.3 (d, 3H, J 6.5 Hz, CH (6)); C NMR : δ
3
5,6
3
5,6
was treated with NaBH(OAc) (Scheme 1)
.
Methyl α-L-
102.49 (C-1), 87.27 (C-2), 73.80 and 65.13 (C-4 and C-5), 69.48
(C-3), 62.84 (OCH (4)), 55.27 (OCH (1)), 22.42 and 17.00
3
1
evalopyranoside was isolated in nearly quantitative yield. In its H-
NMR spectrum H-4 gave a doublet at 3.39 ppm having J 10 Hz, that
3
3
3
(CH (3) and CH (6));
3 3
6 [α] -56.33 (c 1.04); H NMR: δ 4.78 (s, 1H, H-1), 3.91 (d, 1H,
D
4,5
1
confirms the trans-diaxial relationship of the H-4 and H-5 protons. The
completely reversed stereoselectivity compared to the reduction of 2
could only be achieved in the presence of the free OH groups suggesting
that these play a role in the complexation of the hydride donor thus
governing the direction of the attack of the hydride anion.
Isopropylidenation of 8 gave compound 9 and after methylation (→10)
and deprotection (→11) the resulting diol was selectively methylated at
OH-2 at 0 °C under phase-transfer conditions. The isolated yield of
J
6 Hz, H-5), 3.56 (s, 3H, OCH (4)), 3.47 (s, 1H, OCH (2)),
3 3
5,6
3.37 (s, 1H, OCH (1)), 2.84 and 2.76 (2s, 1-1H, H-2 and H-4),
3
13
1.33 (s, 3H, CH (3)), 1.32 (d, 1H, J 6 Hz, CH (6)); C NMR : δ
3
5,6
3
98.75 (C-1), 85.9 (C-2), 82.87 and 64.76 (C-4 and C-5), 69.1 (C-
3), 55.73 (OCH ), 23.86 and 16.77 (CH (3) and CH (6));
3
3
3
1
7 [α] -101.5 (c 1.26); H NMR : δ 4.85 (s, 1H, H-1), 4.52 (d, 1H,
D
J
6.5 Hz, H-5), 4.22 and 3.97 (2s, 1-1H, 2 x OH), 3.52 (s, 3H,
5,6
compound 12 was 67 % after chromatographic purification.
OCH ), 3.43 (s, 1H, H-2), 1.54 (s, 3H, CH (3)), 1.34 (d, 3H, J
3 3 5,6
13
1
6.5 Hz, CH (6)); C NMR : δ 204.04 (C-4), 100.47 (C-1), 86.58
The [α] value and the H-NMR data of 12 were in good agreement
3
D
(C-3), 78.23 and 66.78 (C-2 and C-5), 55.98 (OCH ), 23.88
with the data of one of the intermediates of L-nogalose synthesis that
was obtained from methyl 3,6-dideoxy-2,4-di-O-methyl-3-C-
methylene-α-L-arabino-hexopyranoside by epoxidation to provide a 1 :
3
(CH (3)), 13.81 (CH (6));
3
3
1
8 [α] -83.3 (c 0.85, MeOH); H NMR: δ 4.58 (s, 1H, H-1), 3.56
D
(dd, 1H, J 10 Hz, J 6 Hz, H-5), 3.47 (s, 1H , H-2), 3.39
5,Me(6)
1 ratio of two diastereoisomers followed by LiAlH reduction of one of
the epoxides .
4,5
4
7
(d, 1H, J 10 Hz, H-4) 3.34 (s, 3H, OCH ), 1.26 (d, 3H, J
5,Me (6)
4,5
3
13
6 Hz, CH (6)), 1.24 (s, 3H, CH (3)); C NMR : δ 103.28 (C-1),
3
3
76.39 (C-2), 76.12 and 68.56 (C-4 and C-5), 73.58 (C-3) 55.3
(OCH ), 19.18 and 18.4 (CH (3) and CH (6));
In summary, we developed synthetic routes to C-4 epimers of a
branched monosaccharide residue of the glycopeptidolipid antigen of
Mycobacterium avium serovar 19 based on common precursor 2.
3
3
3
1
9 [α] -53.7 (c 1.10); H NMR: δ 4.85 (s, 1H, H-1), 3.87 (s, 1H,
D
H-2), 3.61 (dd, 1H, J 9 Hz, J
6 Hz, H-5), 3.54 (dd, 1H,
4,5
5,Me(6)
J
J
9 Hz, J
3.5 Hz, H-4), 3.38 (s, 3H, OCH ), 3.02 (d, 1H,
4,5
4,OH 3
Acknowledgements:
3.5 Hz, OH), 1.53 and 1.38 (2s, 3-3H, 2 x Ip CH ), 1.36 (s,
4,OH
3
13
3H, CH (3)), 1.3 (d, 3H, J
6 Hz, CH (6)); C NMR: δ
3
5,Me(6)
3
108.76 (Ip kvat.), 98.04 (C-1), 81.56 (C-3), 80.74 (C-2), 76.65 and
65.52 (C-4 and C-5), 54.95 (OCH ), 28.2 and 26.4 (2 x Ip CH ),
3
3
17.51 and 17.45 (CH (3) and CH (6));
3
3
1
10 [α] -72.7 (c 1.07); H NMR: δ 4.83 (d, 1H, J 1 Hz, H-1),
D
1,2
3.8 (d, 1H, J 1 Hz, H-2), 3.56 (dd, 1H, J 10 Hz, J 6.5
5,Me(6)
1,2
4,5
References and Notes:
Hz, H-5), 3.54 (s, 3H, OCH (4)), 3.37 (s, 3H, OCH (1)), 3.12 (d,
3
3
1.
2.
Lipták, A.; Borbás, A.; Bajza, I. Med. Res. Rev., 1994, 14, 307.
1H, J 10 Hz, H-4), 1.55 and 1.37 (2s, 3-3H, 2 x Ip CH ), 1.33
4,5
3
Aspinall, G.O.; Chatterjee, D.; Brennan, P.J. Adv. Carbohydr.
Chem. Biochem., 1995, 51, 169.
13
(s, 3H, CH (3)), 1.27 (d, 3H, J
6,5 Hz, CH (6)); C NMR:
3
3
5,Me(6)
δ 108.54 (Ip kvat.), 98.01 (C-1), 85.74 (C-2), 81.90 (C-3), 81.06
and 65.2 (C-4 and C-5), 60.49 (OCH (4)), 54.99 (OCH (1)),
3.
Chatterjee, D.; Bozic, C.; Aspinall, G. O.; Brennan, P. J. J. Biol.
Chem. 1988, 263, 4092.
3
3
28.28 and 27.09 (2 x Ip CH ) 17.87 and 17.73 (CH (3) and
3
3
CH (6));
4.
5.
Klemer, A.; Beermann, H. J. Carbohydr. Chem., 1983, 2, 457.
3
1
11 [α] -99.4 (c 0.81); H NMR: δ 4.67 (d,1H, J 1,5 Hz, H-1),
D
1,2
Gribble, G.W.; Ferguson, D.C. J. Chem. Soc., Chem. Commun.,
1975, 535.
3.59 (dd, 1H, J 10 Hz, J 6 Hz, H-5), 3.57 (s, 3H, OCH (4)),
3.55 (d, 1H, J 1,5 Hz, H-2), 3.36 (s, 3H, OCH (1)), 3.05 (d, 1H,
4,5
5,6
3
1,2
3
6.
Evans, D.A.; Chapman, K.T.; Carreira, E.M. J. Am. Chem. Soc.,
1988, 110, 3560.
J
10 Hz, H-4), 2.68 (bs, 2H, 2 x OH), 1.32 (s, 3H, CH (3)), 1.31
4,5
3
13
(d, 3H, J 6 Hz, CH (6)); C NMR: δ 100.94 (C-1), 85.39 (C-2),
5,6
3
7.
8.
Yoshimura, J.; Hong, N.; Funabashi, M. Chem. Lett., 1979, 687.
73.84 (C-3), 75.29 and 66.77 (C-4 and C-5), 61.72 (OCH (4)),
55.11 (OCH (1)), 19.41 and 18.08 (CH (3) and CH (6));
12 [α] -57.67 (c 0.75); H NMR: δ 4.71 (d, 1H, J 1 Hz, H-1),
D 1,2
3.58 (s, 3H, OCH (4)), 3.53 (dd, 1H, J 10 Hz, J 6 Hz, H-5),
3 4,5 5,6
3
Physical and spectroscopic data of the synthesized compounds: 3
3
3
3
1
1
[α] -42.13 (c 1.08); H NMR: δ 4.93 (s, 1H, H-1), 3.88 (dd, 1H,
D
J
1 Hz, J
6.5 Hz, H-5), 3.75 (s, 1H, H-2), 3.40 (s, 3H,
4,5
5,Me(6)
OCH ), 3.17 (dd, 1H, J 1 Hz, J
5 Hz, H-4), 2.48 (d, 1H,
3
4,5
4,OH
3.49 (s, 3H, OCH (2)), 3.36 (s, 3H, OCH (1)), 3.07 (d, 1H, J
1
3
3
1,2
J
5 Hz, OH), 1.57 and 1.38 (s, 3-3H, Ip CH ), 1.42 (s, 3H,
3
4,OH
Hz, H-2), 3.01 (s, 1H, OH), 2.9 (d,1H, J 10 Hz, H-4), 1.3 (s, 3H,
4,5
13
CH (3)), 1.34 (d, 3H, J
6 Hz, CH (6));
3
3
5,Me(6)
CH (3)), 1.28 (d, 3H, J 6 Hz, CH (6)); C NMR: δ 97.78 (C-
3
5,6
3
1
4 [α] -37.8 (c 0.35); H NMR : δ 4.92 (s,1H, H-1), 3.83 (dd, 1H,
D
1), 86.2 (C-2), 85.08 and 66.69 (C-4 and C-5), 73.25 (C-3), 61.6
and 59.07 (OCH (2) and OCH (4)), 54.94 (OCH (1)), 18.54 and
J
6 Hz, J
1 Hz, H-5), 3.69 (s, 1H, H-2), 3.52 (s, 3H,
5,6
4,5
3
3
3
OCH (4)), 3.37 (s, 3H, OCH (1)), 2.69 (d, 1H, J 1 Hz, H-4),
3
3
4,5
18.01 (CH (3) and CH (6));
3 3
1
1.56 and 1.4 (2s, 3-3H, Ip CH ), 1.37 (s, 3H, CH (3)), 1.31 (d, 3H,
3
3
13 H NMR: δ 4.79 (d, 1H, J 4 Hz, H-1), 4.10 (m, 1H, J 3.5
1,2 4,5
13
J
6 Hz, CH (6)); C NMR : δ 109.03 (Ip), 98.4 (C-1), 89.2 (C-
3
5,6
Hz, J 7 Hz, H-5), 3.51, 3.50, 3.43, 3.35 (s, 3-3H, OMe), 2.98 (d,
5,6
2), 78.69 (C-3) 78.6 and 64.4 (C-4 and C-5), 62.11 (OCH (4)),
3
1H, H-4), 2.89 (d, 1H, H-2), 1.36 (d, 3H, CH (6)), 1.35 (s, 3H,
3
13
55.05 (OCH (1)), 26.78 and 25.69 (2 x Ip CH ), 24.84 and 16.75
3
3
CH (3)) ; C NMR: δ 98.34 (C-1), 83.79 (C-2), 82.92, 67.45 (C-4
3
(CH (3) and CH (6));
3
3
and C-5), 60.76, 60.33, 55.77, 50.82 (OCH ), 18.54 (CH (3)),
3 3
15.01 (CH (6)).
3
1
5 [α] -103.7 (c 1.04); H NMR : δ 4.78 (s,1H, H-1), 3.94 (d, 1H,
D
J
6.5 Hz, H-5), 3.59 (s, 3H, OCH (4)), 3.37 (s, 3H, OCH (1)),
3 3
5,6