1552
T. Kaliaperumal et al. / Tetrahedron: Asymmetry 22 (2011) 1548–1552
4.6. COBE reductase activity
of Biotechnology, Government of India for funding and the Sophis-
ticated Analytical Instrumentation Facility (SAIF), IITM for the NMR
spectra.
The assay mixture contained 20 mM of Tris–HCl buffer pH 7.8,
NADH (0.2 mM), COBE (8 mM) and 20 ll of the crude extract in a
total volume of 1 ml. The consumption of reduced NADH was fol-
lowed spectrophotometrically (V-530 UV/vis spectrophotometer)
at 334 nm and 25 °C using a molar absorption coefficient of
6180 MÀ1 cmÀ1. One Unit (U) of COBE reductase is defined as the
References
1. Zhou, B.; Gopalan, A. S.; Van, M. F.; Sheih, W. R.; Sih, C. J. J. Am. Chem. Soc. 1983,
105, 5925–5926.
2. Jiang, B.; Liu, J. F.; Zao, S. Y. J. Org. Chem. 2003, 68, 2376–2384.
3. Kita, K.; Kataoka, M.; Shimizu, S. J. Biosci. Bioengg. 1999, 88, 591–598.
4. Aragozzini, F.; Valenti, M.; Santaniello, E.; Ferraboschi, P.; Grisenti, P.
Biocatalysis Biotransformation 1992, 5, 325–332.
5. Wan, Y.; Sun, Y.; Luo, Y.; Li, D.; Zhang, Z. J. Org. Chem. 2005, 70, 1070–1072.
6. Imamoto, T.; Nishimura, M.; Koide, A.; Yoshida, K. J. Org. Chem. 2007, 72, 7413–
7416.
amount of enzyme that catalyses the reduction of 1 lmol NADH
minÀ1 under the conditions specified. The substrate used for alco-
hol dehydrogenase was acetaldehyde, while for the aldehyde
reductase, p-nitro benzaldehyde was used.27
7. Shimizu, S.; Kataoka, M.; Katoh, M.; Morikawa, T.; Miyoshi, T.; Yamada, H. Appl.
Environ. Microbiol. 1990, 56, 2374–2377.
4.7. Analytical methods
8. Zelinski, T.; Peters, J.; Kula, M. R. J. Biotechnol. 1994, 33, 283–292.
9. Yashohara, Y.; Kizaki, J.; Hasegawa, S.; Takahashi, M.; Wada, M.; Kataoka, S.
Appl. Microbiol. Biotechnol. 1999, 51, 847–851.
10. Heldge, E.; Rupert, P.; Cumther, W.; Dirc, W. Tetrahedron: Asymmetry 2004, 15,
3591–3593.
11. Yang, Z. H.; Yao, S. J.; Lin, D. Q. Ind. Eng. Chem. Res. 2004, 43, 4871–4875.
12. Maya, A.; Dirk, W. B. Tetrahedron: Asymmetry 2005, 16, 899–901.
13. He, J. Y.; Sum, Z. H.; Ruan, W. Q.; Yan, X. U. Process Biochem. 2006, 41, 244–249.
14. Yu, M. A.; Wei, Y. M.; Zhao, L.; Jiang, L.; Zhu, X. B.; Qi, W. J. Ind. Microbiol.
Biotechnol. 2007, 34, 151–156.
15. Fantin, G.; Fogagnolo, M.; Medici, A.; Pedrini, P.; Poli, S.; Gardini, F.; Guerzoni,
M. E. Tetrahedron: Asymmetry 1991, 2, 243–246.
16. Peters, J.; Zelinski, T.; Kula, R. M. Appl. Microbiol. Biotechnol. 1992, 38, 334–340.
17. Wipf, B.; Kupfer, E.; Bertazzi, R.; Leuenberger, H. G. W. Helv. Chim. Acta 1983,
66, 485–488.
18. Boccu, E.; Ebert, C.; Gardossi, L.; Gianferrara, T.; Linda, P. Biotechnol. Bioeng.
1990, 35, 928–934.
19. Nakamura, K.; Kawai, Y.; Oka, S.; Ohno, A. Bull. Chem. Soc. Jpn. 1989, 62, 875–
879.
20. Nakamura, K.; Kawai, Y.; Ohno, A. Tetrahedron Lett. 1990, 31, 267–270.
21. Nakamura, K.; Kawai, Y.; Nakajima, N.; Ohno, A. J. Org. Chem. 1991, 56, 4778–
4783.
22. Ushio, K.; Ebara, K.; Yamashita, T. Enzyme Microb. Technol. 1991, 13, 834–839.
23. Ushio, K.; Hada, J.; Tanaka, Y.; Ebara, K. Enzyme Microb. Technol. 1993, 15, 222–
228.
24. Ushio, K.; Inovya, K.; Nakamura, K.; Oka, S.; Ohno, A. Tetrahedron Lett. 1986, 27,
2657–2660.
25. Hunt, R. J.; Carter, R. A.; Murrell, C. J.; Dalton, H.; Hallinan, K. O.; Crout, D. H. G.;
Holt, R. A.; Crosby, J. Biocatalysis Biotransformation 1995, 12, 159–178.
26. Kaliaperumal, T.; Kumar, S.; Gummadi, S. N.; Chadha, A. J. Ind. Microbiol.
Biotechnol. 2010, 37, 159–165.
Conversion of the substrate (COBE) into product (CHBE) was
determined by GC using a TC Wax capillary column under the
following conditions: oven temperature 130 °C, injector and detec-
tor at 250 °C, carrier gas: He at 1 kg/cm2, detector: flame ionization
detector. Sample injection volume was 1 ll. The enantiomeric ex-
cess (ee%) was determined by a Jasco PU-1580 HPLC equipped with
a PDA detector. The chiral column used was Chiralcel OB-H (Daicel,
4.6 Â 250 mm) while the mobile phase used was hexane/isopropa-
nol (95:5) at a flow rate of 0.5 ml/min at 25 °C monitored at
220 nm. The 1H and 13C NMR spectra were recorded in CDCl3 on JEOL
GSX400 spectrometers operating at 400 MHz and 100 MHz respec-
tively. Chemical shifts are expressed in ppm values (d) using TMS
as the internal standard. Infrared spectra were recorded on a Shima-
dzu IR 470 Instrument. Optical rotations were determined on an
AutopolÒ digital polarimeter. Thin layer chromatography was per-
formed on Silica Gel 60 F-240 precoated silica gel aluminium sheets
to monitor the progress of the reaction. The mobile phase used for
the thin layer chromatography was 20% ethyl acetate in hexane.
Mass spectra were recorded on a Finnigan Mat 8230-GC–MS Spec-
trometer. Cell density in the medium was monitored by measuring
the optical density using a Jasco V-530 UV/vis spectrophotometer
at 600 nm. Dry cell weight was calculated from the established cal-
ibration (OD600 of 1 corresponds to 0.26 g dry cell weight/l). The spe-
cific growth rate was calculated by an exponential growth model.
27. Shimizu, S.; Kataoka, M.; Kita, K. J. Mol. Catal. B: Enzym. 1998, 5, 321–325.
28. Yamamoto, H.; Matsuyama, A.; Kobayashi, B. Biotechnol. Biochem. 2002, 66,
481–483.
Acknowledgments
29. Peters, J.; Minuth, T.; Kula, R. M. Biocatalysis 1993, 8, 31–46.
30. Ellis, E. M. FEMS Microbiol. Lett. 2002, 216, 123–131.
31. Denis, L. C.; Ferguson, J.; Young, E. T. J. Biol. Chem. 1983, 258, 1165–1171.
32. Dickinson, F. M.; Berrieman, S. Biochem. J. 1997, 167, 237–244.
One of us (Tarjan Kaliaperumal) thanks the Indian Institute of
Technology, Madras for a fellowship. We thank The Department