NoVel Inhibitors of Neutrophil Elastase
). The distance d is measured between the NH hydrogen in the
His57 imidazole ring and either one of the carboxylic oxygens in
Asp102. It defines the synchronous proton transfer from the
oxyanion hole.58 The distance between the hydroxyl proton in
Ser195 and the basic pyridine-type nitrogen in His57 is also
important for this transfer. However, because of easy rotation of
Journal of Medicinal Chemistry, 2007, Vol. 50, No. 20 4937
7
2
(14) Bedard, M.; McClure, C. D.; Schiller, N. L.; Francoeur, C.; Cantin,
A.; Denis, M. Release of interleukin-8, interleukin-6, and colony-
stimulating factors by upper airway epithelial cells: implications for
cystic fibrosis. Am. J. Respir. Cell Mol. Biol. 1993, 9, 455-462.
15) Fitch, P. M.; Roghanian, A.; Howie, S. E.; Sallenave, J. M. Human
neutrophil elastase inhibitors in innate and adaptive immunity.
Biochem. Soc. Trans. 2006, 34, 279-282.
(16) Carden, D.; Xiao, F.; Moak, C.; Willis, B. H.; Robinson-Jackson,
S.; Alexander, S. Neutrophil elastase promotes lung microvascular
injury and proteolysis of endothelial cadherins. Am. J. Physiol. 1998,
(
the hydroxyl about the C-O bond in Ser195, we measured d
3
between the oxygen in Ser195 and the basic nitrogen in His57 (see
Figure 7).
275, H385-H392.
Molecular mechanics optimization of a binding mode also caused
deformation of the benzoylpyrazole molecule, and the change in
(
17) Barnes, P. J.; Stockley, R. A. COPD: current therapeutic interventions
and future approaches. Eur. Respir. J. 2005, 25, 1084-1106.
(18) Kardos, P.; Keenan, J. Tackling COPD: a multicomponent disease
driven by inflammation. Med. Gen. Med. 2006, 8, 54.
19) Chughtai, B.; O’Riordan, T. G. Potential role of inhibitors of
energy (∆E) due to deformation was calculated as ∆E ) E
where E is the MM+ conformational energy of the inhibitor
molecule in the docked structure chosen as the favorable binding
mode and where E is the conformational energy of the inhibitor
2
- E
1
,
1
(
(
(
neutrophil elastase in treating diseases of the airway. J. Aerosol Med.
2
2004, 17, 289-298.
in its geometry attained in the optimized docked structure.
20) Tremblay, G. M.; Janelle, M. F.; Bourbonnais, Y. Anti-inflammatory
activity of neutrophil elastase inhibitors. Curr. Opin. InVest. Drugs
2003, 4, 556-565.
Acknowledgment. We thank Dr. Scott Busse from the
Department of Chemistry and Biochemistry at Montana State
University for providing expert NMR analysis. This work was
supported in part by Department of Defense Grant W9113M-
21) Moreira, R.; Santana, A. B.; Iley, J.; Neres, J.; Douglas, K. T.; Horton,
P. N.; Hursthouse, M. B. Design, synthesis, and enzymatic evaluation
of N1-acyloxyalkyl- and N1-oxazolidin-2,4-dion-5-yl-substituted
beta-lactams as novel inhibitors of human leukocyte elastase. J. Med.
Chem. 2005, 48, 4861-4870.
0
4-1-0001, National Institutes of Health Grant RR020185, and
(
22) Odagaki, Y.; Ohmoto, K.; Matsuoka, S.; Hamanaka, N.; Nakai, H.;
Toda, M.; Katsuya, Y. The crystal structure of the complex of non-
peptidic inhibitor of human neutrophil elastase ONO-6818 and
porcine pancreatic elastase. Bioorg. Med. Chem. 2001, 9, 647-651.
23) Veale, C. A.; Bernstein, P. R.; Bohnert, C. M.; Brown, F. J.; Bryant,
C.; Damewood, J. R., Jr.; Earley, R.; Feeney, S. W.; Edwards, P.
D.; Gomes, B.; Hulsizer, J. M.; Kosmider, B. J.; Krell, R. D.; Moore,
G.; Salcedo, T. W.; Shaw, A.; Silberstein, D. S.; Steelman, G. B.;
Stein, M.; Strimpler, A.; Thomas, R. M.; Vacek, E. P.; Williams, J.
C.; Wolanin, D. J.; Woolson, S. Orally active trifluoromethyl ketone
inhibitors of human leukocyte elastase. J. Med. Chem. 1997, 40,
the Montana State University Agricultural Experimental Station.
The U.S. Army Space and Missile Defense Command, 64
Thomas Drive, Frederick, MD 21702, is the awarding and
administering acquisition office. The content of this report does
not necessarily reflect the position or policy of the U.S.
Government.
(
Supporting Information Available: Table S1 on the effect of
N-benzoylpyrazoles 34-59 on NE activity, Table S2 on the analysis
of inhibitory specificity for compounds 34-59; Table S3 on the
3173-3181.
(24) Doherty, J. B.; Ashe, B. M.; Argenbright, L. W.; Barker, P. L.;
Bonney, R. J.; Chandler, G. O.; Dahlgren, M. E.; Dorn, C. P., Jr.;
Finke, P. E.; Firestone, R. A.; Fletcher, D.; Hagmann, W. K.;
Mumord, R.; O’Grady, L.; Maycock, A. L.; Pisano, J. M.; Shah, S.
K.; Thompson, K. R.; Zimmerman, M. Cephalosporin antibiotics can
be modified to inhibit human leukocyte elastase. Nature 1986, 322,
1
HPLC analysis of selected compounds, Table S4 on the H NMR
analysis of selected compounds, Figure S1 showing examples of
semilogarithmic plots used to determine rate constants for N-
benzoylpyrazole spontaneous hydrolysis, and Figure S2 showing
further examples of molecular docking of N-benzoylpyrazoles into
the active site of NE. This material is available free of charge via
the Internet at http://pubs.acs.org.
192-194.
(25) Edwards, P. D.; Bernstein, P. R. Synthetic inhibitors of elastase. Med.
Res. ReV. 1994, 14, 127-194.
(
26) Macdonald, S. J.; Dowle, M. D.; Harrison, L. A.; Clarke, G. D.;
Inglis, G. G.; Johnson, M. R.; Shah, P.; Smith, R. A.; Amour, A.;
Fleetwood, G.; Humphreys, D. C.; Molloy, C. R.; Dixon, M.;
Godward, R. E.; Wonacott, A. J.; Singh, O. M.; Hodgson, S. T.;
Hardy, G. W. Discovery of further pyrrolidine trans-lactams as
inhibitors of human neutrophil elastase (HNE) with potential as
development candidates and the crystal structure of HNE complexed
with an inhibitor (GW475151). J. Med. Chem. 2002, 45, 3878-3890.
27) McBride, J. D.; Freeman, H. N.; Leatherbarrow, R. J. Selection of
human elastase inhibitors from a conformationally constrained
combinatorial peptide library. Eur. J. Biochem. 1999, 266, 403-
References
(
1) Mannino, D. M. Epidemiology and global impact of chronic
obstructive pulmonary disease. Semin. Respir. Crit. Care Med. 2005,
2
6, 204-210.
(
2) Rubenfeld, G. D.; Herridge, M. S. Epidemiology and outcomes of
acute lung injury. Chest 2007, 131, 554-562.
(
(
3) Strausbaugh, S. D.; Davis, P. B. Cystic fibrosis: a review of
epidemiology and pathobiology. Clin. Chest Med. 2007, 28, 279-
288.
412.
(4) Abraham, E. Neutrophils and acute lung injury. Crit. Care Med. 2003,
3
1, S195-S199.
(28) Cheng, D. H.; Shen, Q.; Qian, J.; Qian, Z.; Ye, Q. Z. Expression
and purification of catalytic domain of human macrophage elastase
for high throughput inhibitor screening. Acta Pharmacol. Sin. 2002,
23, 143-151.
(29) Gao, F.; Du, G. H. Application of chemical arrays in screening
elastase inhibitors. Comb. Chem. High Throughput Screening 2006,
9, 381-388.
(30) Knight, W. B.; Green, B. G.; Chabin, R. M.; Gale, P.; Maycock, A.
L.; Weston, H.; Kuo, D. W.; Westler, W. M.; Dorn, C. P.; Finke, P.
E.; Hagmann, W. K.; Hale, J. J.; Liesch, J.; MacCoss, M.; Navia,
M. A.; Shah, S. K.; Underwood, D.; Doherty, J. B. Specificity,
stability, and potency of monocyclic â-lactam inhibitors of human
leucocyte elastase. Biochemistry 1992, 31, 8160-8170.
(31) Schepetkin, I. A.; Khlebnikov, A. I.; Kirpotina, L. N.; Quinn, M. T.
Novel small-molecule inhibitors of anthrax lethal factor identified
by high-throughput screening. J. Med. Chem. 2006, 49, 5232-5244.
(32) Schepetkin, I. A.; Kirpotina, L. N.; Khlebnikov, A. I.; Quinn, M. T.
High-throughput screening for small-molecule activators of neutro-
phils: identification of novel N-formyl peptide receptor agonists. Mol.
Pharmacol. 2007, 71, 1061-1074.
(
5) Moraes, T. J.; Zurawska, J. H.; Downey, G. P. Neutrophil granule
contents in the pathogenesis of lung injury. Curr. Opin. Hematol.
2006, 13, 21-27.
(
(
(
(
6) Pham, C. T. Neutrophil serine proteases: specific regulators of
inflammation. Nat. ReV. Immunol. 2006, 6, 541-550.
7) Faurschou, M.; Borregaard, N. Neutrophil granules and secretory
vesicles in inflammation. Microbes Infect. 2003, 5, 1317-1327.
8) Stockley, R. A. Neutrophils and protease/antiprotease imbalance. Am.
J. Respir. Crit. Care Med. 1999, 160, S49-S52.
9) Kawabata, K.; Hagio, T.; Matsuoka, S. The role of neutrophil elastase
in acute lung injury. Eur. J. Pharmacol. 2002, 451, 1-10.
10) Moraes, T. J.; Chow, C.-W.; Downey, G. P. Proteases and lung injury.
(
(
(
Crit. Care Med. 2003, 31, S189-S194.
11) Owen, C. A.; Campbell, E. J. The cell biology of leukocyte-mediated
proteolysis. J. Leukocyte Biol. 1999, 65, 137-150.
12) Chua, F.; Laurent, G. J. Neutrophil elastase: mediator of extracellular
matrix destruction and accumulation. Proc. Am. Thorac. Soc. 2006,
3, 424-427.
(
13) Dollery, C. M.; Owen, C. A.; Sukhova, G. K.; Krettek, A.; Shapiro,
S. D.; Libby, P. Neutrophil elastase in human atherosclerotic
plaques: production by macrophages. Circulation 2003, 107, 2829-
(33) McGovern, S. L.; Caselli, E.; Grigorieff, N.; Shoichet, B. K. A
common mechanism underlying promiscuous inhibitors from virtual
and high-throughput screening. J. Med. Chem. 2002, 45, 1712-1722.
2836.