Organic Letters
Letter
Chem. Soc. 2012, 134, 2012. (l) Zhai, H.; Borzenko, A.; Lau, Y. Y.;
Ahn, S. H.; Schafer, L. L. Angew. Chem., Int. Ed. 2012, 51, 12219.
AUTHOR INFORMATION
■
(m) Reznichenko, A. L.; Hultzsch, K. C. Organometallics 2013, 32,
*
1394. (n) Manna, K.; Everett, W. C.; Schoendorff, G.; Ellern, A.;
Windus, T. L.; Sadow, A. D. J. Am. Chem. Soc. 2013, 135, 7235.
Author Contributions
(o) McGhee, A.; Cochran, B. M.; Stenmark, T. A.; Michael, F. E.
§
C.R.H. and M.J.M. contributed equally.
Chem. Commun. 2013, 49, 6800. (p) Nguyen, T. M.; Nicewicz, D. A. J.
Am. Chem. Soc. 2013, 135, 9588.
Notes
(
4) For an excellent review, see: (a) Tan, K. L. ACS Catal. 2011, 1,
77. See also: (b) Pascal, R. Eur. J. Org. Chem. 2003, 2003, 1813.
c) Page, M. I.; Jencks, W. P. Proc. Natl. Acad. Sci. U. S. A. 1971, 68,
1678.
The authors declare no competing financial interest.
8
(
ACKNOWLEDGMENTS
■
(5) For books and reviews, see: (a) Diederich, F.; Stang, P. J.
Support from NSERC, the University of Ottawa, CFI and the
Ontario MRI is gratefully acknowledged. Acknowledgment is
also made to the donors of The American Chemical Society
Petroleum Research Fund for support of related research
efforts. M.J.M. thanks Boehringer Ingelheim (Canada) Ltd. for
a collaborative graduate scholarship and NSERC for an
Alexander Graham Bell Canada Graduate Scholarship.
Templated Organic Synthesis; Wiley-VCH: Chichester, U.K., 2000.
(
(
b) Bols, M.; Skrydstrup, T. Chem. Rev. 1995, 95, 1253.
c) Fensterbank, L.; Malacria, M.; Sieburth, S. M. Synthesis 1997,
1
997, 813. (d) Gauthier, D. R., Jr.; Zandi, K. S.; Shea, K. J. Tetrahedron
1
998, 54, 2289. For examples of stoichiometric work using CH O-
2
based tethers, see: (e) Harding, K. E.; Hollingsworth, D. R.
Tetrahedron Lett. 1988, 29, 3789. (f) Amoroso, R.; Cardillo, G.;
Tomasini, C. Heterocycles 1992, 34, 349. (g) Van Benthem, R. A. T.
M.; Hiemstra, H.; Speckamp, W. N. J. Org. Chem. 1992, 57, 6083.
REFERENCES
■
(
h) Weinstein, A. B.; Schuman, D. P.; Tan, Z. X.; Stahl, S. S. Angew.
Chem., Int. Ed. 2013, 52, 11867.
6) (a) MacDonald, M. J.; Schipper, D. J.; Ng, P. J.; Moran, J.;
Beauchemin, A. M. J. Am. Chem. Soc. 2011, 133, 20100.
b) MacDonald, M. J.; Hesp, C. R.; Schipper, D. J.; Pesant, M.;
Beauchemin, A. M. Chem. - Eur. J. 2013, 19, 2597.
7) For a review on intramolecular Cope-type hydroaminations, see:
a) Cooper, N. J.; Knight, D. W. Tetrahedron 2004, 60, 243. For
intermolecular reactivity: (b) Moran, J.; Gorelsky, S. I.; Dimitrijevic,
E.; Lebrun, M.-E.; Bedard, A.-C.; Seguin, C.; Beauchemin, A. M. J. Am.
(
1) Asymmetric hydroaminations reactions have been studied
predominantly in intramolecular systems. For reviews, see: (a) Hanne-
douche, J.; Schulz, E. Chem. - Eur. J. 2013, 19, 4972. (b) Reznichenko,
A. L.; Hultzsch, K. C. In Chiral Amine Synthesis: Methods, Developments
and Applications; Nugent, T., Ed.; Wiley-VCH: Weinheim, 2010; pp
(
(
3
41−375. (c) Chemler, S. R. Org. Biomol. Chem. 2009, 7, 3009. (d) Zi,
(
G. Dalton Trans. 2009, 9101. (e) Aillaud, I.; Collin, J.; Hannedouche,
J.; Schulz, E. Dalton Trans. 2007, 5105. (f) Hultzsch, K. C. Adv. Synth.
Catal. 2005, 347, 367. (g) Hultzsch, K. C. Org. Biomol. Chem. 2005, 3,
(
́
́
1819. (h) Roesky, P. W.; Mu
̈
ller, T. E. Angew. Chem., Int. Ed. 2003, 42,
Chem. Soc. 2008, 130, 17893. (c) Beauchemin, A. M. Org. Biomol.
Chem. 2013, 11, 7039.
2708. For a general review on hydroamination, see: (i) Mu
̈
ller, T. E.;
Hultzsch, K. C.; Yus, M.; Foubelo, F.; Tada, M. Chem. Rev. 2008, 108,
795.
2) For examples of enantioselective intermolecular hydroaminations
using biased alkenes, see: (a) Dorta, R.; Egli, P.; Zurcher, F.; Togni, A.
J. Am. Chem. Soc. 1997, 119, 10857. (b) Kawatsura, M.; Hartwig, J. F. J.
Am. Chem. Soc. 2000, 122, 9546. (c) Lober, O.; Kawatsura, M.;
(8) Guimond, N.; MacDonald, M. J.; Lemieux, V.; Beauchemin, A.
3
(
M. J. Am. Chem. Soc. 2012, 134, 16571. In this mechanistic work, we
showed that formaldehyde is an efficient precatalyst. Paraformaldehyde
was used as a source of anhydrous formaldehyde (six examples, 5−10
mol %). However, an induction period was observed, likely due to the
need for depolymerization to occur. One example showed that using
aqueous formaldehyde (37 wt % in H O; CH O present as its hydrate)
̈
̈
Hartwig, J. F. J. Am. Chem. Soc. 2001, 123, 4366. (d) Utsunomiya, M.;
Hartwig, J. F. J. Am. Chem. Soc. 2003, 125, 14286. (e) Li, K.; Horton,
P. N.; Hursthouse, M. B.; Hii, K. K. J. Organomet. Chem. 2003, 665,
2
2
could prevent this induction period. However, the presence of water as
a possible source of catalyst inhibition was not addressed (see refs 10b,
250. (f) Hu, A.; Ogasawara, M.; Sakamoto, T.; Okada, A.; Nakajima,
1
(
1 for a related system with a high inhibition).
9) Tokuyama, H.; Kuboyama, T.; Amano, A.; Yamashita, T.;
Fukuyama, T. Synthesis 2000, 2000, 1299.
10) (a) Gravestock, M. B.; Knight, D. W.; Thornton, S. R. J. Chem.
K.; Takahashi, T.; Lin, W. Adv. Synth. Catal. 2006, 348, 2051.
(
(
g) Zhou, J.; Hartwig, J. F. J. Am. Chem. Soc. 2008, 130, 12220.
h) Pan, S.; Endo, K.; Shibata, T. Org. Lett. 2012, 14, 780. (i) Miki, Y.;
(
Hirano, K.; Satoh, T.; Miura, M. Angew. Chem., Int. Ed. 2013, 52,
Soc., Chem. Commun. 1993, 169. (b) Bell, K. E.; Coogan, M. P.;
Gravestock, M. B.; Knight, D. W.; Thornton, S. R. Tetrahedron Lett.
10830. (j) Zhu, S.; Niljianskul, N.; Buchwald, S. L. J. Am. Chem. Soc.
2
013, 135, 15746. For examples of enantioselective intermolecular
1
997, 38, 8545. (c) Gravestock, M. B.; Knight, D. W.; Malik, K. M. A.;
Thornton, S. R. J. Chem. Soc., Perkin Trans. 1 2000, 3292.
11) For Knight’s work using a CH O/BnNHOH-derived nitrone,
hydroaminations using unbiased alkenes, see: (k) Zhang, Z.; Lee, S.
D.; Widenhoefer, R. A. J. Am. Chem. Soc. 2009, 131, 5372.
(
2
(
l) Reznichenko, A. L.; Nguyen, N. H.; Hultzsch, K. C. Angew.
preformed or formed in situ from BnNHOH·HCl, K CO and aq.
2
3
Chem., Int. Ed. 2010, 49, 8984. (m) Zhu, S.; Buchwald, S. L. J. Am.
Chem. Soc. 2014, 136, 15913. (n) Yang, Y.; Shi, S.-L.; Niu, D.; Liu, P.;
Buchwald, S. L. Science 2015, 349, 62.
CH (OH) , see ref 10b. No experimental procedure could be found to
2
2
allow direct comparison with this in situ work. However, collectively
our results suggest that the conditions presented herein result in
significantly improved hydroamination reactivity compared to the in
situ conditions.
(
3) (a) Ickes, A. R.; Ensign, S. C.; Gupta, A. K.; Hull, K. L. J. Am.
Chem. Soc. 2014, 136, 11256. For intramolecular diastereoselective
examples, see: (b) Gagne, M. R.; Stern, C. L.; Marks, T. J. J. Am. Chem.
́
(
12) (a) For a review of substrate-directable chemical reactions, see:
Hoveyda, A. H.; Evans, D. A.; Fu, G. C. Chem. Rev. 1993, 93, 1307.
b) For a review on removable or catalytic directing groups, see:
Rousseau, G.; Breit, B. Angew. Chem., Int. Ed. 2011, 50, 2450.
13) Zhao, S.; Bilodeau, E.; Lemieux, V.; Beauchemin, A. M. Org.
Lett. 2012, 14, 5082.
14) (a) Lucet, D.; Le Gall, T.; Mioskowski, C. Angew. Chem., Int. Ed.
998, 37, 2580. (b) Kotti, S. R. S. S.; Timmons, C.; Li, G. Chem. Biol.
Soc. 1992, 114, 275. (c) O’Neil, I. A.; Cleator, E.; Southern, J. M.;
Hone, N.; Tapolczay, D. J. Synlett 2000, 695. (d) Bagley, M. C.;
Tovey, J. Tetrahedron Lett. 2001, 42, 351. (e) Molander, G. A.; Dowdy,
E. D.; Pack, S. K. J. Org. Chem. 2001, 66, 4344. (f) Hong, S.; Marks, T.
J. J. Am. Chem. Soc. 2002, 124, 7886. (g) Cochran, B. M.; Michael, F.
E. Org. Lett. 2008, 10, 329. (h) Crimmin, M. R.; Arrowsmith, M.;
Barrett, A. G. M.; Casely, I. J.; Hill, M. S.; Procopiou, P. A. J. Am.
Chem. Soc. 2009, 131, 9670. (i) Lauterwasser, F.; Hayes, P. G.; Piers,
(
(
(
1
Drug Des. 2006, 67, 101. (c) Kim, H.; So, S. M.; Chin, J.; Kim, B. M.
Aldrichimica Acta 2008, 41, 77.
W. E.; Schafer, L. L.; Bras
̈
e, S. Adv. Synth. Catal. 2011, 353, 1384.
j) Baxter Vu, J. M.; Leighton, J. L. Org. Lett. 2011, 13, 4056.
k) Pronin, S. V.; Tabor, M. G.; Jansen, D. J.; Shenvi, R. A. J. Am.
(
(
D
Org. Lett. XXXX, XXX, XXX−XXX