Chemistry - A European Journal
10.1002/chem.202000214
COMMUNICATION
[
16]
M. A. Boreen, J. Arnold, Multiple Bonding in Actinide Chemistry. In
Encyclopedia of Inorganic and Bioinorganic Chemistry; R. A. Scott,
Ed.; Wiley: Hoboken 2018.
featuring high calculated bond orders and substantial f-orbital
contributions to the bonding orbital. In the case of 1, a significant
π
backbonding contribution is present, contrasting with
[17]
X.-W. Chi, Q.-Y. Wu, J.-H. Lan, C.-Z. Wang, Q. Zhang, Z.-F. Chai, W.-
Q. Shi, Organometallics 2019, 38, 1963–1972.
S. S. Sen, H. W. Roesky, D. Stern, J. Henn, D. Stalke, J. Am. Chem.
Soc. 2010, 132, 1123–1126.
theoretical expectations for uranium–silylene species[17] and
highlighting the importance of investigating actinide–heavy
[
[
[
[
18]
19]
20]
21]
S. S. Sen, S. Khan, P. P. Samuel, H. W. Roesky, Chem. Sci. 2012, 3,
3 3
tetrylene bonds. Reaction of (CpSiMe ) U with a chlorosilylene
659–682.
resulted in reduction to a silicon(I) dimer, emphasizing the
importance of the silylene’s supporting ligands to stabilizing
uranium–silicon bonds. Current work is focused on the reactivity
of 1 and 2, experimental determination of the thermodynamic
parameters for uranium–silylene binding, and the synthesis of
related actinide, lanthanide, and group 14 congeners.
L. Álvarez-Rodríguez, J. A. Cabeza, P. García-Álvarez, D. Polo,
Coord. Chem. Rev. 2015, 300, 1–28.
R. Zitz, H. Arp, J. Hlina, M. Walewska, C. Marschner, T. Szilvási, B.
Blom, J. Baumgartner, Inorg. Chem. 2015, 54, 3306–3315.
R. Azhakar, R. S. Ghadwal, H. W. Roesky, H. Wolf, D. Stalke,
Organometallics 2012, 31, 4588–4592.
R. Azhakar, R. S. Ghadwal, H. W. Roesky, H. Wolf, D. Stalke, Chem.
Commun. 2012, 48, 4561–4563.
J. G. Brennan, R. A. Andersen, J. L. Robbins, J. Am. Chem. Soc.
[22]
[
[
[
23]
24]
25]
1
986, 108, 335–336.
L. Maron, O. Eisenstein, R. A. Andersen, Organometallics 2009, 28,
629–3635.
3
Acknowledgements
[
[
26]
27]
P. Pyykkö, M. Atsumi, Chem. – Eur. J. 2009, 15, 186–197.
B. Cordero, V. Gómez, A. E. Platero-Prats, M. Revés, J. Echeverría, E.
Cremades, F. Barragán, S. Alvarez, Dalton Trans. 2008, 2832–2838.
M. T. Gamer, P. W. Roesky, S. N. Konchenko, P. Nava, R. Ahlrichs,
Angew. Chem. Int. Ed. 2006, 45, 4447–4451.
W. J. Evans, J. M. Perotti, J. W. Ziller, D. F. Moser, R. West,
Organometallics 2003, 22, 1160–1163.
P. L. Arnold, S. T. Liddle, J. McMaster, C. Jones, D. P. Mills, J. Am.
Chem. Soc. 2007, 129, 5360–5361.
The uranium–silicon distances in 1 and 2 are significantly shorter (~80
pm) than the sum of the van der Waals radii as estimated by Bondi (A.
Bondi, J. Phys. Chem. 1964, 68, 441–451), suggesting a uranium–
silicon bonding interaction. It is also worth noting that the van der
Waals radius for uranium estimated by Bondi is much shorter (>40
pm) than more recent estimates (see, for example, S. S. Batsanov,
Inorg. Mat. 2001, 37, 871-885).
This work was supported by the Director, Office of Science,
Office of Basic Energy Sciences, Division of Chemical Sciences,
Geosciences, and Biosciences Heavy Element Chemistry
Program of the U.S. Department of Energy (DOE) at LBNL
under Contract DE-AC02-05CH11231. I.J.B. acknowledges the
U.S. DOE Integrated University Program for a graduate research
fellowship. Collection and interpretation of the magnetic
susceptibility data and near-IR spectra were supported by the
National Science Foundation (NSF) under grant CHE-1800252to
Prof. Jeffrey R. Long. M.A.B. acknowledges support from NSF
GFRP No. DGE 1106400. We thank College of Chemistry's
NMR facility staff for their assistance. NMR instruments are
supported in part by National Institute of Health grant
S10OD024998. We thank Drs. S. Minasian and M. E. Garner for
helpful discussions.
[
28]
[29]
[
[
30]
31]
[
32]
A. Zalkin, J. G. Brennan, R. A. Andersen, Acta Crystallogr. C 1988, 44,
2104–2106.
[33]
J.-C. Berthet, J.-F. Le Maréchal, M. Nierlich, M. Lance, J. Vigner, M.
Ephritikhine, J. Organomet. Chem. 1991, 408, 335–341.
J.-C. Berthet, C. Villiers, J.-F. Le Maréchal, B. Delavaux-Nicot, M.
Lance, M. Nierlich, J. Vigner, M. Ephritikhine, J. Organomet. Chem.
1992, 440, 53–65.
C. J. Windorff, M. R. MacDonald, K. R. Meihaus, J. W. Ziller, J. R.
Long, W. J. Evans, Chem. – Eur. J. 2016, 22, 772–782.
C.-W. So, H. W. Roesky, P. M. Gurubasavaraj, R. B. Oswald, M. T.
Gamer, P. G. Jones, S. Blaurock, J. Am. Chem. Soc. 2007, 129,
[
[
34]
35]
Keywords: actinides • donor-acceptor interactions • heavy
carbenes • silylenes • uranium
[36]
12049–12054.
[
37]
L. R. Morss, N. M. Edelstein, J. Fuger, J. J. Katz, The Chemistry of the
Actinide and Transactinide Elements., Springer, 2006.
[
[
1]
2]
S. T. Liddle, Angew. Chem. Int. Ed. 2015, 54, 8604–8641.
S. G. Minasian, J. L. Krinsky, J. D. Rinehart, R. Copping, T. Tyliszczak,
M. Janousch, D. K. Shuh, J. Arnold, J. Am. Chem. Soc. 2009, 131,
[
[
[
[
38]
39]
40]
41]
R. Tacke, T. Ribbeck, Dalton Trans. 2017, 46, 13628–13659.
C. J. Windorff, W. J. Evans, Organometallics 2014, 33, 3786–3791.
D. R. Kindra, W. J. Evans, Chem. Rev. 2014, 114, 8865–8882.
J. G. Brennan, R. A. Andersen, A. Zalkin, Inorg. Chem. 1986, 25,
13767–13783.
[
[
[
3]
4]
5]
S. T. Liddle, J. McMaster, D. P. Mills, A. J. Blake, C. Jones, W. D.
Woodul, Angew. Chem. Int. Ed. 2009, 48, 1077–1080.
A. B. Altman, A. C. Brown, G. Rao, T. D. Lohrey, R. D. Britt, L. Maron,
S. G. Minasian, D. K. Shuh, J. Arnold, Chem. Sci. 2018, 9, 4317–4324.
S. P. Vilanova, J. R. Walensky, Actinides: Pnictogen Complexes. In
Encyclopedia of Inorganic and Bioinorganic Chemistry; R. A. Scott,
Ed.; Wiley: Hoboken 2018.
M. Ephritikhine, Coord. Chem. Rev. 2016, 319, 35–62.
M. Porchia, U. Casellato, F. Ossola, G. Rossetto, P. Zanella, R.
Graziani, J. Chem. Soc. Chem. Commun. 1986, 1034–1035.
P. L. Diaconescu, A. L. Odom, T. Agapie, C. C. Cummins,
Organometallics 2001, 20, 4993–4995.
1
756–1760.
S. S. Sen, A. Jana, H. W. Roesky, C. Schulzke, Angew. Chem. Int. Ed.
009, 48, 8536–8538.
[
[
42]
43]
2
For examples of natural population analyses in amidinato-silylene
transition metal complexes, see the following:
[
a] K. Junold, J. A. Baus, C. Burschka, T. Vent-Schmidt, S. Riedel, R.
Tacke, Inorg. Chem. 2013, 52, 11593–11599.
b] B. Blom, S. Enthaler, S. Inoue, E. Irran, M. Driess, J. Am. Chem.
Soc. 2013, 135, 6703–6713.
[
[
6]
7]
[
[
[
[
8]
9]
M. S. Winston, E. R. Batista, P. Yang, A. M. Tondreau, J. M. Boncella,
Inorg. Chem. 2016, 55, 5534–5539.
T. Mehdoui, J.-C. Berthet, P. Thuéry, M. Ephritikhine, Chem. Commun.
10]
2005, 2860–2862.
[
[
11]
12]
M.-T. Lee, C.-H. Hu, Organometallics 2004, 23, 976–983.
K. L. Nash, Separation Chemistry for Lanthanides and Trivalent
Actinides. In Handbook on the Physics and Chemistry of Rare Earths;
K. A. Gschneidner Jr., L. Eyring, G. R. Choppin, G. H. Lander, Eds.;
Elsevier Science, Amsterdam, 1994, vol. 18, 197–238.
[
13]
H. H. Dam, D. N. Reinhoudt, W. Verboom, Chem. Soc. Rev. 2007, 36,
367–377.
[
[
14]
15]
P. L. Arnold, S. T. Liddle, Chem. Commun. 2006, 3959–3971.
S. Hameury, P. de Frémont, P. Braunstein, Chem. Soc. Rev. 2017, 46,
632–733.
This article is protected by copyright. All rights reserved.