2,6-dialkylpiperidines from a common intermediate have
been sporadic in the literature.9 Therefore, there is still
considerable interest in developing methodologies that not
only allow the stereoselective synthesis of 2,6-dialkylpip-
eridines but also are efficient and amenable to synthetic
manipulation.
Scheme 1. Tandem Overman Rearrangement and
Amidomercuration Strategy for Construction of
2,6-Disubstituted Piperidine Rings
During the course of our recent studies on developing new
methodologies for the asymmetric synthesis of bioactive five-
and six-membered nitrogen heterocycles, especially poly-
hydroxylated pyrrolidines and piperidines,10 it was noticed
that Hg(II) could mediate the Overman rearrangement
reaction11 of allylic imidates to allylic amine derivatives, as
well as the intramolecular amidomercuration reaction12 of
ꢀ-alkenylcarbamate/amides to form piperidine rings. Also
known is that the stereochemistry of the intramolecular
amino-/amido-mercuration reactions is often dependent upon
the structure of substrates and reaction conditions used.12 As
shown in Scheme 1, these findings strongly suggest that 2,6-
disubstituted piperidine rings can be stereoselectively syn-
thesized from an allylic imidate such as IV by the Hg(II)-
mediated tandem Overman rearrangement and intramolecular
amidomercuration reactions. Furthermore, considering that
allylic alcohols required for the synthesis of the requisite
allylic imidates are readily available, the Hg(II)-mediated
tandem Overman rearrangement and intramolecular ami-
domercuration reactions can provide an efficient and general
solution for the stereoselective synthesis of 2,6-disubstituted
piperidine rings from the relatively simple allylic alcohols.
Despite such possibility, as well as the efficiency and
versatility of the reactions, the Hg(II)-mediated tandem
Overman rearrangement and intramolecular amidomercura-
tion reactions have never been realized so far. Herein, we
report that the above strategy indeed enables the stereose-
lective synthesis of cis- and trans-2,6-disubstituted pip-
eridines from commercially available 2,7-octadienol. Appli-
cation of the developed methodology to the stereoselective
synthesis of solenopsin A and isosolenopsin A is also
described.
The tandem Overman rearrangement and intramolecular
amidomercuration reactions were accessed with the allylic
imidate 1 (see Supporting Information for the synthesis of
1) by screening various Hg(II) salts at room temperature,
and the results are summarized in Table 1. Only the reactive
Hg(II) salts (entries 1-3) enabled the tandem reactions to
generate the desired piperidine 2. Interestingly, mercuric
acetate (entry 4) gave the oxazoline product 3 as a sole
identifiable product, which formed probably through the Hg-
(II)-mediated 5-exo cyclization of 1.11c,d The reactions did
not take place with mercuric bromide and mercuric chloride
(entries 5 and 6).
(3) (a) Leclercq, S.; Braekman, J. C.; Daloze, D.; Pasteels, J. M. Prog.
Chem. Org. Nat. Prod. 2000, 79, 115-229. (b) Agami, C.; Couty, F.; Evano,
G.; Darro, F.; Kiss, R. Eur. J. Org. Chem. 2003, 2003, 2062-2070. (c) Yi,
G. B.; McClendon, D.; Desaiah, D.; Goddard, J.; Lister, A.; Moffitt, J.;
Vander Meer, R. K.; deSazo, R.; Lee, K. S.; Rockhold, R. W. Int. J. Toxicol.
2003, 22, 81-86 and references therein.
(4) Raub, M. F.; Cardellina, J. H.; Choudhary, M. I.; Ni, C. Z.; Clardy,
J.; Alley, M. C. J. Am. Chem. Soc. 1991, 113, 3178-3180.
(5) (a) King, A. G.; Meinwald, J. Chem. ReV. 1996, 96, 1105-1122. (b)
Daloze, D.; Braekman, J. C.; Pasteels, J. M. Chemoecology 1995, 5/6, 173-
183.
(6) For recent reviews, see: (a) Weintrub, P. M.; Sabol, J. S.; Kane, J.
M.; Borcherding, D. R. Tetrahedron 2003, 59, 2953-2989. (b) Laschat,
S.; Dickner, T. Synthesis 2000, 1781-1813. (c) Bailey, P. D.; Millwood,
P. A.; Smith, P. D. J. Chem. Soc., Chem. Commun. 1998, 633-640. (d)
Baliah, V.; Jeyaraman, R.; Chandrasekaran, L. Chem. ReV. 1983, 83, 379-
423.
(7) (a) Davis, F. A.; Rao, A.; Carroll, P. J. Org. Lett. 2003, 5, 3855-
3857. (b) Bertin, B. G.; Compere, D.; Gil, L.; Marazano, C.; Das, B. C.
Eur. J. Org. Chem. 2000, 2000, 1391-1399. (c) Beak, P.; Lee, W.-K. J.
Org. Chem. 1990, 55, 2578-2580. (d) Waeeerman, H. H.; Rodriques, K.;
Kucharczyk, R. Tetrahedron Lett. 1989, 30, 6077-6080. (e) Carruthers,
W.; Williams, M. Chem. Commun. 1986, 1287-1289. (f) Tufariello, J.;
Puglis, J. Tetrahedron Lett. 1986, 27, 1489-1492. (g) Gallagher, T.;
Lathbury, D. Tetrahedron Lett. 1985, 26, 6249-6252.
(8) (a) Shu, C.; Liebeskind, L. S. J. Am. Chem. Soc. 2004, 125, 2878-
2879. (b) Makabe, H.; Kong, L. K.; Hirota, M. Org. Lett. 2003, 5, 27-29.
(c) Ciblat, S.; Besse, P.; Papastergiou, V.; Veschambre, H.; Canrt, J. L.;
Troin, Y. Tetrahedron: Asymmetry 2000, 11, 2221-2229. (d) Jefford, C.
W.; Wang, J. B. Tetrahedron Lett. 1993, 34, 2911-2914. (e) Ryckman, D.
M.; Stevens, R. V. J. Org. Chem. 1987, 52, 4274-4279.
(9) (a) Amat, M.; Llor, O.; Hidalgo, J.; Escolano, C.; Bosch, J. J. Org.
Chem. 2003, 68, 1919-1928. (b) Wilkinson, T. J.; Stehle, N. W.; Beak, P.
Org. Lett. 2000, 2, 155-158. (c) Poerwono, H.; Higashiyama, K.; Yamauchi,
T.; Kubo, H.; Ohmiya, S.; Takahashi, H. Tetrahedron 1998, 54, 13955-
13970. (d) Comins, D. L.; Waglarz, M. A. J. Org. Chem. 1991, 56, 2506-
2512.
To establish relative stereochemistry of the 2,6-substituents
of the piperidine 2, conversion to the known 2,6-disubstituted
(12) (a) Khalaf, J. F.; Datta, A. J. Org. Chem. 2004, 69, 387-390. (b)
de Koning, C. B.; van Otterlo, W. A. L.; Michael, J. P. Tetrahedron 2003,
59, 8337-8345. (c) Enierga, G.; Espiritu, M.; Perlmutter, P.; Pham, N.;
Rose, M.; Sjoberg, S.; Thienthong, N.; Wong, K. Tetrahedron: Asymmetry
2001, 12, 597-604. (d) Martin, O. R.; Saavedra, O. M.; Xie, F.; Liu, L.;
Picasso, S.; Vogel, P.; Kizu, H.; Asano, N. Bioorg. Med. Chem. 2001, 9,
1269-1278. (e) Takahata, H.; Bandoh, H.; Momose, T. Tetrahedron 1993,
49, 11205-11212. (f) Takahata, H.; Banba, Y.; Tajima, M.; Momose, T.
J. Org. Chem. 1991, 56, 240-245. (g) Takahata, H.; Takehara, H.; Ohkubo,
N.; Momose, T. Tetrahedron: Asymmetry 1990, 1, 561-566. (h) Takacs,
J. M.; Helle, M. A.; Sanyal, B. J.; Eberspacher, T. A. Tetrahedron Lett.
1990, 31, 6765-6768. (i) Adams, D. R.; Carruthers, W.; Williams, M. J.
J. Chem. Soc., Perkin Trans. 1 1989, 1507-1513. (j) Tamaru, Y.; Hojo,
M.; Yoshida, Z. J. Org. Chem. 1988, 53, 5731-5741. (k) Tokuda, M.;
Yamada, Y.; Suginome, H. Chem. Lett. 1988, 17, 1289-1290. (l) Kinsman,
R.; Lathbury, D.; Vernon, P.; Gallagher, T. J. Chem. Soc., Chem. Commun.
1987, 243-244. (m) Harding, K. E.; Marman, T. H. J. Org. Chem. 1984,
49, 2838-2840. (n) Harding, K. E.; Burks, S. R. J. Org. Chem. 1984, 49,
40-44. (o) Harding, K. E.; Burks, S. R. J. Org. Chem. 1981, 46, 3920-
3922.
(10) (a) Singh, O. V.; Han, H. Tetrahedron Lett. 2003, 44, 2387-2391.
(b) Han, H.; Yang, H. Tetrahedron Lett. 2003, 44, 1567-1570. (c) Singh,
S.; Chikkanna, D.; Singh, O. V.; Han, H. Synlett 2003, 1279-1282.
(11) For reviews, see: (a) Overman, L. E. Acc. Chem. Res. 1980, 13,
218-224. (b) Overman, L. E. Angew. Chem., Int. Ed. Engl. 1984, 23, 579-
586. (c) Overman, L. E. J. Am. Chem. Soc. 1974, 96, 597-599. (d)
Overman, L. E. J. Am. Chem. Soc. 1976, 98, 2901-2910. (e) Kang, J.;
Kim, T. H.; Yew, K. H.; Lee, W. K. Tetrahedron: Asymmetry 2003, 14,
415-418. (f) Anderson, C. E.; Overman, L. E. J. Am. Chem. Soc. 2003,
125, 12412-12413 and references therein.
3068
Org. Lett., Vol. 6, No. 18, 2004