www.afm-journal.de
www.MaterialsViews.com
+
Boroxine (R = pyrenyl). MALDI-TOF mass (m/z): [M + H] calculated
E. W. Meijer, A. P. H. J. Schenning, Chem. Soc. Rev. 2009, 38, 671;
g) A. Harada, Y. Takashima, H. Yamaguchi, Chem. Soc. Rev. 2009,
38, 875; h) F. Zhao, M. L. Ma, B. Xu, Chem. Soc. Rev. 2009, 38,
883; i) M.-M. Russew, S. Hecht, Adv. Mater. 2010, 22, 3348;
j) W. L. Leong, J. J. Vittal, Chem. Rev. 2011, 111, 688; k) X. Zhang,
C. Wang, Chem. Soc. Rev. 2011,40, 94; l) A Dawn, T. Shiraki,
S. Haraguchi, S. Tamaru, S. Shinkai, Chem. Asia. J. 2011, 6, 266.
2] Review: a) T. Shimizu, M. Masuda, H. Minamikawa, Chem. Rev.
for C H B O : 684.22; found: 684.10. Elemental analysis: Calcd. (%): C,
4
8
28
3
3
8
4.27; H, 3.98. Found: C, 84.33; H, 3.42.
SEM and TEM Observations: The self-assemblies were dropped onto
carbon grids and dried under vacuum. The SEM (Hitachi S-4800) and
TEM (Hitachi H-7000) instruments were operated at 30 and 75 keV,
respectively.
Fourier Transform-IR and UV–vis Spectroscopic Measurements: IR
spectra of the self-assemblies were measured with a Fourier transform
IR spectrometer (JASCO FT-620) operated at 4 cm resolution with an
unpolarized beam and an attenuated total reflection accessory system
Diamond MIRacle, horizontal ATR accessory with a diamond crystal
prism, Pike Technologies, USA) and a mercury cadmium telluride
detector. UV–vis spectra of the self-assemblies and of cis-jasmone were
measured with a spectrophotometer (Hitachi U-3300) equipped with a
temperature controller (Yamato BU150A).
[
2
005, 105, 1401; b) X. Gao, H. Matsui, Adv. Mater. 2005, 17, 2037;
−
1
c) E. Gazit, Chem. Soc. Rev. 2007, 36, 1263; d) J. Fang, J. Mater.
Chem. 2007, 17, 3479; e) J. H. Jung, M. Park, S. Shinkai, Chem. Soc.
Rev. 2010, 39, 4286; f) N. Kameta, H. Minamikawa, T. Shimizu, Soft
Matter 2011, 7, 4539; g) Y. Kim, T. Kim, M. Lee, Polym. Chem. 2013,
(
4
, 1300.
[
3] a) H. Sao, J. R. Parquette, Angew. Chem. 2009, 121, 2563; Angew.
Chem. Int. Ed. 2009, 48, 2525; b) F. Versluis, I. Tomatsu, S. Kehr,
C. Fregonese, A. W. J. W. Tepper, M. C. A. Stuart, B. J. Ravoo,
R. I. Koning, A. Kros, J. Am. Chem. Soc. 2009, 131, 13186;
c) X. Zhang, M. Mathew, A. J. Gesquiere, J. Fang, J. Mater. Chem.
2010, 20, 3716.
Preparation of Nanotubes Encapsulating cis-Jasmone:
A toluene
solution (5 mL) of cis-jasmone (24.0 mg, 146 μmol) was dropped onto
dried boroxine nanotubes (10.0 mg, 14.6 μmol). Capillary action enabled
the nanotubes to encapsulate cis-jasmone. After aging overnight
in a refrigerator, the solution was filtered through a polycarbonate
membrane with 0.2 μm pore size. The residual nanotubes were washed
several times with toluene to remove any unencapsulated cis-jasmone.
The amount of encapsulated cis-jasmone was determined as follows:
the nanotubes were transformed to sheet in the presence of water,
thereby the encapsulated cis-jasmone was compulsively released. The
released cis-jasmone was selectively extracted into cyclohexane, and
the UV–vis spectrum of the solution was measured. The amount of
encapsulated cis-jasmone in the nanotubes (5.0 mg) was calculated to
be 0.30−0.35 mg.
Release Experiments: Nanotubes encapsulating cis-jasmone were
placed into the desiccator, in which the humidity was precisely controlled.
Relative humidities of 6%, 32%, 55%, and 86% were achieved by
keeping saturated aqueous solutions of NaOH, CaCl /6H O, Ca(NO ) ,
and KCl, respectively, in the desiccator. After certain time, the amount
of residual cis-jasmone in the nanotubes was determined by UV/vis
spectroscopic measurements as described above. The release ratio was
calculated from the concentration of the residual cis-jasmone and the
initial concentration of the encapsulated cis-jasmone.
[4] a) J.-P. Douliez, B. Pontoire, C. Gaillard, ChemPhysChem 2006,
7, 2071; b) A. Brizard, C. Aime, T. Labrot, I. Huc, D. Berthier,
F. Artzner, B. Desbat, R. Oda, J. Am. Chem. Soc. 2007, 129, 3754;
c) S. Yagai, M. Yamauchi, A. Kobayashi, T. Karatsu, A. Kitamura,
T. Ohba, Y. Kikkawa, J. Am. Chem. Soc. 2012, 134, 18205;
d) Z. Huang, S.-K. Kang, M. Banno, T. Yamaguchi, D. Lee, C. Seok,
E. Yashima, M. Lee, Science 2012, 337, 1521.
[
5] X. Yan, Q. He, K. Wang, L. Duan, Y. Cui, J. Li, Angew. Chem. 2007,
19, 2483; Angew. Chem. Int. Ed. 2007, 46, 2431.
6] a) Y. Sun, C. He, K. Sun, Y. Li, H. Dong, Z. Wang, Z. Li, Langmuir
011, 27, 11364; b) X. Zhang, T. Bera, W. Liang, J. Fang, J. Phys.
1
[
2
Chem. B 2011, 115, 14445.
2
2
3 2
[
[
7] W. Ding, M. Wada, H. Minamikawa, N. Kameta, M. Masuda,
T. Shimizu, Chem. Commun. 2012, 48, 8625.
8] S. M. Nomura, Y. Mizutani, K. Kurita, A. Watanabe, K. Akiyoshi, Bio-
chim. Biophys. Acta 2005, 1669, 164.
[9] C. Park, I. H. Lee, S. Lee, Y. Song, M. Rhue, C. Kim, Proc. Natl. Acad.
Sci. USA 2006, 103, 1199.
[
10] Z. Yang, G. Liang, L. Wang, B. Xu, J. Am. Chem. Soc. 2006, 128,
3
038.
Supporting Information
[
11] a) N. Kameta, A. Tanaka, H. Akiyama, H. Minamikawa, M. Masuda,
T. Shimizu, Chem. Eur. J. 2011, 17, 5251; b) K. Ishikawa, N. Kameta,
M. Aoyagi, M. Asakawa, T. Shimizu, Adv. Funct. Mater. 2013, 23,
Supporting Information is available from the Wiley Online Library or
from the author.
1
677.
[
12] A. L. Korich, P. M. Iovine, Dalton Trans. 2010, 39, 1423.
[
13] a) N. A. A. Zwaneveld, R. Pawlak, M. Abel, D. Catalin,
D. Gigmes, D. Bertin, L. Porte, J. Am. Chem. Soc. 2008, 130, 6678;
b) Y. Du, K. Mao, P. Kamakoti, P. Ravikovitch, C. Paur, S. Cundy,
Q. Li, D. Calabro, Chem. Commun. 2012, 48, 4606;
c) J. F. Dienstmaier, D. D. Medina, M. Dogru, P. Knochel, T. Bein,
W. M. Heckl, M. Lackinger, ACS Nano 2012, 6, 7234; d) T. Fauny,
S. Clair, M. Abel, F. Dumur, D. Gigmes, L. Porte, J. Phys. Chem. C
Acknowledgements
This work was partly supported by a Grant-in-Aid for Young Scientists
(B) (no. 24750143) from the Ministry of Education, Culture, Sports,
Science and Technology (MEXT) and the Japan Society for the Promotion
of Science (JSPS).
2
012, 116, 4819; e) S. B. Kalidindi, C. Wiktor, A. Ramakrishnan,
Received: June 12, 2013
Revised: July 10, 2013
Published online: September 16, 2013
J. Webing, A. Schneemann, G. V. Tendeloo, R. A. Fischer, Chem.
Commun. 2013, 49, 463.
[
14] a) N. Kameta, H. Minamikawa, M. Masuda, G. Mizuno, T. Shimizu,
Soft Matter 2008, 4, 1681; b) W. Ding, N. Kameta, H. Minamikawa,
M. Wada, T. Shimizu, M. Masuda, Adv. Healthcare Mater. 2012, 1,
6
99; c) N. Kameta, S. J. Lee, M. Masuda, T. Shimizu, J. Mater. Chem.
[
1] Review: a) T. Ikeda, J. Mamiya, Angew. Chem. 2007, 119, 512;
Angew. Chem. Int. Ed. 2007, 46, 506; b) T. Kato, Y. Hirai, S. Nakaso,
M. Moriyama, Chem. Soc. Rev. 2007, 36, 1857; c) L. C. Palmer,
S. I. Stupp, Accounts Chem. Res. 2008, 41, 1674; d) S. Yagai,
A. Kitamura, Chem. Soc. Rev. 2008, 37, 1520; e) D. Pijper,
B. L. Feringa, Soft Matter 2008, 4, 1349; f) C. C. Lee, C. Grenier,
B 2013, 1, 276.
[15] a) H. E. Katz, J. Org. Chem. 1985, 50, 5027; b) H. E. Katz, J. Am.
Chem. Soc. 1985, 107, 1420; c) H. E. Katz, J. Am. Chem. Soc.
1986, 108, 7640; d) H. E. Katz, Organometallics 1987, 6, 1134;
e) H. E. Katz, J. Org. Chem. 1989, 54, 2179; f) M. T. Reetz,
C. M. Niemeyer, K. Harms, Angew. Chem. 1991, 103, 1515; Angew.
6
08 wileyonlinelibrary.com
© 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Adv. Funct. Mater. 2014, 24, 603–609