Journal of the American Chemical Society
Communication
H.; Ye, K.-Y.; Wu, Q.-F.; Dai, L.-X.; You, S.-L. Adv. Synth. Catal. 2012,
354, 1084. (d) Kiener, C. A.; Shu, C.; Incarvito, C.; Hartwig, J. F. J.
Am. Chem. Soc. 2003, 125, 14272.
ASSOCIATED CONTENT
■
S
* Supporting Information
Experimental data and copies of 1H and 13C spectra for all new
compounds. This material is available free of charge via the
(11) For sporadic examples describing metal-catalyzed asymmetric
allylic substitution reaction using aliphatic alcohols as a nucleophile,
see: (a) Roggen, M.; Carreira, E. M. Angew. Chem., Int. Ed. 2011, 50,
5568. (b) Lam, F. L.; Au-Yeung, T. T.-L.; Kwong, F. Y.; Zhou, Z.;
Wong, K. Y.; Chan, A. S. C. Angew. Chem., Int. Ed. 2008, 47, 1280.
(c) Evans, P. A.; Leahy, D. K.; Andrews, W. J.; Uraguchi, D. Angew.
Chem., Int. Ed. 2004, 43, 4788. (d) Shu, C.; Hartwig, J. F. Angew.
Chem., Int. Ed. 2004, 43, 4794.
AUTHOR INFORMATION
Corresponding Author
■
(12) For selected examples on the metal-catalyzed nonenantiose-
lective hydroalkoxylation of allene, see: (a) Cui, D. M.; Zheng, Z.-L.;
Zhang, C. J. Org. Chem. 2009, 74, 1426. (b) Kinderman, S. S.;
Doodeman, R.; Van Beijma, J. W.; Russcher, J. C.; Tjen, K. C. M. F.;
Kooistra, T. M.; Mohaselzadeh, H.; Van Maarseveen, J. H.; Hiemstra,
H.; Schoemaker, H. E.; Rutjes, F. P. J. T. Adv. Syn. Catal. 2002, 344,
736. (c) Doodeman, R.; Rutjes, F. P. J. T.; Hiemstra, H. Tetrahedron
Lett. 2000, 41, 5979.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was supported by the National Research Founda-
tion funded by the Korean government (NRF-2013R1A2A2A
01068684).
(13) Unlike the acylic acetals 5a and 5b, cyclic acetals 6a and 6b
1
could be easily resolved by H NMR. The characteristic anomeric
REFERENCES
■
methine hydrogen peak appears at 3.85 ppm (for compound 6a) and
at 4.07 ppm (for compound 6b).
(14) The reaction at high temperature (above 50 °C) gave the
(1) For some reviews on the metal-catalyzed hydrofunctionalization,
see: (a) Le Bras, J.; Muzart, J. Chem. Soc. Rev. 2014, 43, 3003.
(b) Munoz, M. P. Chem. Soc. Rev. 2014, 43, 3164. (c) Krause, N.;
Winter, C. Chem. Rev. 2011, 111, 1994. (e) Patil, N. T.; Yamamoto, Y.
Chem. Rev. 2008, 108, 3395.
product in significantly lower selectivity.
(15) The high selectivity confirms that the RCM step does not harm
the selectivity obtained in the hydroalkoxylation step.
(16) For the detailed procedure for the preparation of 13, 15, 33, and
34, see the SI.
(17) The structure of compound 14a was unambiguously confirmed
by an alternative synthesis starting from known the acetyl derivative of
ent-14a (R = Ac) by deacetylation and the subsequent MEM
protection (see the SI). For the reference, see: Chen, P.; Lin, L.
Tetrahedron 2013, 69, 10045.
(18) For an early example describing a similar effect of toluene in the
Pd-catalyzed asymmetric allylic substitution with phenol, see: Trost, B.
M.; Toste, F. D. J. Am. Chem. Soc. 1999, 121, 4545.
(19) The ee of compounds 23−25 was determined by the chiral
HPLC analysis of the corresponding bis-benzyl ethers. For the detailed
information, see the SI.
(20) For a related report on the racemic synthesis of dihydroxylated
cyclic acetals, see Yu, X. M.; Han, H.; Blagg, B. S. J. J. Org. Chem. 2005,
70, 5599.
(2) For some recent examples on the intramolecular metal-catalyzed
asymmetric hydroalkoxylation of allenes, see: (a) Wang, Y. M.;
Lackner, A. D.; Toste, F. D. Acc. Chem. Res. 2014, 47, 889. (b) Yu, S.;
Ma, S. Angew. Chem., Int. Ed. 2012, 51, 3074. (c) Zhang, Z.;
Widenhoefer, R. A. Angew. Chem., Int. Ed. 2007, 46, 283. (d) Hamilton,
G. L.; Eun, J. K.; Mba, M.; Toste, F. D. Science 2007, 317, 496.
(3) For selected recent reviews on the RCM reaction, see: (a) Deiters,
A.; Martin, S. F. Chem. Rev. 2004, 104, 2199. (b) Grubbs, R. H.; Miller,
S. J.; Fu, G. C. Acc. Chem. Res. 1995, 28, 446.
(4) For a seminal study describing the oxacycle synthesis by way of
the ring closing metathesis of cyclic acetals, see: Fu, G. C.; Grubbs, R.
H. J. Am. Chem. Soc. 1992, 114, 5426.
(5) For some recent reviews on the oligosaccharide synthesis, see:
(a) Satoh, H.; Manabe, S. Chem. Soc. Rev. 2013, 42, 4297. (b) Crich,
D. Acc. Chem. Res. 2010, 43, 1144. (c) Zhu, X.; Schmidt, R. R. Angew.
Chem., Int. Ed. 2009, 48, 1900. (d) Smoot, J. T.; Demchenko, A. V.
Advances in Carbohydrate Chemistry and Biochemistry; Derek, H., Ed.;
Academic Press: 2009; Vol. 62, pp 161.
(6) (a) For some examples on the use of Pd-catalyzed allylic
substitution in stereodivergent glycosylation, see: O’Douherty, G. A.
Advances in Carbohydrate Chemistry and Biochemistry; Derek, H., Ed.;
Academic Press: New York, 2013; Vol. 69, pp 55. Also see: Kim, H.;
Men, H.; Lee, C. J. Am. Chem. Soc. 2004, 126, 1336. (b) For a recent
example describing stereoselective ring-closing glycosylation, see: Liu,
H.; Li, X. J. Org. Chem. 2014, 79, 5834.
(7) (a) Kim, H.; Rhee, Y. H. J. Am. Chem. Soc. 2012, 134, 4011.
(b) Kim, H.; Lim, W.; Im, D.; Kim, D.; Rhee, Y. H. Angew. Chem., Int.
Ed. 2012, 51, 12055. (c) Kim, H.; Rhee, Y. H. Synlett 2012, 23, 2875.
(8) (a) Trost, B. M.; Xie, J.; Sieber, J. D. J. Am. Chem. Soc. 2011, 133,
(21) For the structural determination of 29, 31, 35a, and 35b via the
1
analysis of 2-D H NMR spectra, see the SI.
(22) (a) Herold, K.; Gollmick, F. A.; Groth, I.; Roth, M.; Menzel, K.
D.; Mollmann, U.; Grafe, U.; Hertweck, C. Chem.Eur. J. 2005, 11,
̈
̈
5523. (b) Chakraborty, T. K.; Goswami, R. K.; Sreekanth, M.
Tetrahedron Lett. 2007, 48, 4075. (c) Kawamura, N.; Sawa, R.;
Takahashi, Y.; Sawa, T.; Kinoshita, N.; Naganawa, H.; Hamada, M.;
Takeuchi, T. J. Antibiot. 1995, 48, 1521.
(23) For a recent report describing this issue, see: Chen, J.-H.; Ruei,
J.-H.; Mong, K.-K. T. Eur. J. Org. Chem. 2014, 1827.
20611. (b) Trost, B. M.; Simas, A. B. C.; Plietker, B.; Jakel, C.; Xie, J.
̈
Chem.–Eur. J. 2005, 11, 7075. (c) Trost, B. M.; Jakel, C.; Plietker, B. J.
̈
Am. Chem. Soc. 2003, 125, 4438. (d) Krautwald, S.; Schafroth, M. A.;
Sarlah, D.; Carreira, E. M. J. Am. Chem. Soc. 2014, 136, 3020.
(9) For some recent reviews on the metal-catalyzed asymmetric
allylic substitution; (a) Takemoto, Y.; Miyabe, H. In Catalytic
Asymmetric Synthesis; John Wiley & Sons, Inc.: Hoboken, NJ, 2010;
p 227. (b) Trost, B. M. Org. Process Res. Dev. 2012, 16, 185. (c) Trost,
B. M.; Zhang, T.; Sieber, J. D. Chem. Sci. 2010, 1, 427. (d) Mohr, J. T.;
Stoltz, B. M. Chem.Asian J. 2007, 2, 1476.
(10) For some recent examples on the asymmetric allylic
etherification of phenol, see: (a) Trost, B. M.; Rao, M.; Dieskau, A.
P. J. Am. Chem. Soc. 2013, 135, 18697. (b) Kim, D.; Reddy, S.; Singh,
O. V.; Lee, J. S.; Kong, S. B.; Han, H. Org. Lett. 2013, 15, 512. (c) He,
D
dx.doi.org/10.1021/ja508587f | J. Am. Chem. Soc. XXXX, XXX, XXX−XXX