Z. Nairoukh, J. Blum / Journal of Molecular Catalysis A: Chemical 358 (2012) 129–133
133
Table 8
fect of catalyst recycling in the hydroformylation of 4-methylstyrene on the yield and on the regioselectivity in an aqueous medium at 50 and at 90 C.a
◦
◦
Yield of b (%)b
Yield of l (%)b
Ratio b/lb
Run No.
Reaction temp. ( C)
Conversion (%)
1
2
3
4
5
1
2
3
4
5
50
50
50
50
50
90
90
90
90
90
96
94
93
92
95
99
96
94
92
81
90
87
85
80.5
83
61
54
54
56
49
6
7
8
11.5
12
38
42
40
36
32
15:1
12:1
11:1
7:1
7:1
1.6:1
1.3:1
1.3:1
1.5:1
1.5:1
a
◦
Reaction conditions as in Table 3 except that the recycled catalyst was used either at 50 or at 90 C.
The average of at least two experiments that did not differ by more than ± 3%.
b
detect Rh(0) species after the hydroformylation processes by
References
TEM-EDAX-EDS analyses. Surprisingly, the FTIR spectra of the
heterogenized rhodium catalysts before and after the hydro-
formylations did not reveal any real visible changes. The spectra
[
[
1] P.W.N.M. van Leeuwen, C. Claver, Rhodium Catalyzed Hydroformylation,
Kluwer, Dordrecht, 2000.
2] F. Ungvary, Coord. Chem. Rev. 249 (2005) 2946–2961.
contained the characteristic signals of [Rh(cod)Cl] , of rhodium
bound phosphane and those of the catalyst-free silica sol–gel
[3] T. Rische, R. Rogenbuck, A. Schmidt, Chem. Rev. 99 (1999) 3329–3366.
2
[4] F. Agbossou, J.F. Carpentier, A. Mortreux, Chem. Rev. 95 (1995) 2485–2506.
[5] H.L. Clarke, Curr. Org. Chem. 9 (2005) 701–718, and references therein.
[6] A.A. Dabbwala, R.V. Jasrá, H.C. Bajaj, Catal. Commun. 12 (2011) 403–407.
[7] P.W.N.M. Van Leeuwen, N.D. Clement, M.J.-L. Tschan, Coord. Chem. Rev. 255
[
30].
(
2011) 1499–1517.
4
. Conclusions
[
[
8] K. Hamza, J. Blum, Eur. J. Org. Chem. (2007) 4706–4710.
9] K. Hamza, H. Schumann, J. Blum, Eur. J. Org. Chem. (2009) 1502–1505.
Hydroformylation of vinylarenes in a highly regioselective
[10] See e.g., B. Cornils, W. Herrmann, in: B. Cornils, W. Herrmann (Eds.), Applied
Homogeneous Catalysis with Organometallic Compounds, vol. 2, VCH, Wein-
heim, 1996 (Chapter 3).
[11] K.M. Shaughnessy, Chem. Rev. 109 (2009) 643–710.
[12] M. Hauman, H. Yildiz, H. Koch, R. Schomäcker, Appl. Catal. A 236 (2002)
◦
manner can be performed at 50 C by two methods in aqueous
microemulsions. Both methods apply immobilized [Rh(cod)Cl]2
together with a tertiary phosphane as their catalyst. In one
method the catalyst is encaged in non-hydrophobicized ionic-
liquid-confined sol–gel formed by polycondensation of TMOS and
173–178.
[
[
13] M. Hauman, H. Koch, P. Hugo, R. Schomäcker, Appl. Catal. A 225 (2002) 239–249.
14] K. Wormuth, O. Lade, R. Schomäcker, in: K. Holmberg (Ed.), Handbook of
Applied Surface and Colloid Interface Science, vol. 2, Wiley, New York, 2001,
pp. 55–77.
1
-butyl-3-[3-trimethoxsilyl)propyl]imidazolium chloride. In the
second method the presence of the ionic liquid is not required,
but the sol–gel matrix has to be hydrophobicized with alkyl or
aryl groups. Octylated sol–gel gives the best results. The hetero-
genized catalysts in both methods can be recycled. In the method
that involves ionic-liquid the reaction yield (but not the selectivity)
diminishes gradually upon the recycling. When the hydroformyla-
tion is performed by the catalyst within hydrophobic sol–gel the
yield is hardly affected in the first 4–5 runs but the ratio of the b/l
isomeric products decreases somewhat upon recycling. The effi-
ciency and selectivity of hydroformylation by both methods depend
[
[
15] W. Tic, I. Miesiac, J. Szymanowski, J. Colloid Interface Sci. 244 (2001) 423–426.
16] R. Abu-Reziq, D. Avnir, J. Blum, Angew. Chem. Int. Ed. 41 (2002) 4132–4134.
[17] R. Abu-Reziq, J. Blum, D. Avnir, Chem. Eur. J. 10 (2004) 958–962.
[
[
18] D. Tsvelikhovsky, J. Blum, Eur. J. Org. Chem. (2008) 2417–2422.
19] A. Rozin-Ben Baruch, D. Tsvelikhovsky, M. Schwarze, R. Schomäcker, M. Fanun,
J. Blum, J. Mol. Catal. A: Chem. 323 (2010) 65–69.
[20] D. Meltzer, D. Avnir, M. Fanun, V. Gutkin, I. Popov, R. Schomäcker, J. Blum, J.
Mol. Catal. A: Chem. 335 (2011) 8–13.
[
21] T. Yosef, R. Schomäcker, M. Schwarze, M. Fanun, F. Gelman, J. Blum, J. Mol. Catal.
A: Chem. 351 (2011) 46–51.
[22] R. Abu-Reziq, D. Avnir, J. Blum, Eur. J. Org. Chem. (2005) 3640–3642.
[23] S. Ahrland, J. Chatt, N.R. Davis, A.A. Williams, J. Chem. Soc. (1958) 276–288.
[
[
[
24] G. Giordano, R.H. Crabtree, Inorg. Synth. 28 (1990) 88–90.
25] S. Minakata, M. Komatsu, Chem. Rev. 109 (2009) 711–724.
26] E. Tyrode, M.W. Rutland, C.D. Bain, J. Am. Chem. Soc. 130 (2008) 17434–17445.
(
i) on the reaction temperature, (ii) on the electronic nature of the
surfactant, (iii) on the hydrophobicity and quality of the sol–gel
support, and (iv) on the H /CO ratio.
[27] C.J. Brinker, G.W. Scherer, Sol–Gel Science, Academic Press, New York, 1989.
2
[
28] D. Astruc (Ed.), Nanoparticles and Catalysis, Wiley-VCH, Werheim, 2008, and
references cited therein.
Acknowledgement
[29] L.D. Pachón, G. Rothenberg, Adv. Organomet. Chem. 22 (2008) 288–299, and
references therein.
[
30] S. Kinugasa, K. Tanabe, T. Tamura (Eds.), Spectral Data for Organic Compounds:
a) SDBS No. 37991 and (b) SDBS No. 24831, The National Institute of Advanced
Industrial Science and Technology (AIST), Japan, 2011.
We gratefully acknowledge the support of this study by the
Israel Science Foundation through grant No. 299/10.
(