Highly Regioselective Synthesis of Substituted Isoindolinones
together with cyclic aminol 23, in a combined yield of ery. We would also like to acknowledge Simon Peace (GSK)
for helpful discussions.
78% (Scheme 4). The preparation of mono-cyclic sub-
stituted arenes via tethered alkyne cyclotrimerizations
has little precedent and such systems are somewhat
difficult to access via traditional aromatic substitution
References
[
24]
reactions, highlighting the value of this strategy.
[
1] F. A. Luzzio, A. V. Mayorov, S. S. W. Ng, E. A. Kruger,
W. D. J. Figg, J. Med. Chem. 2003, 46, 3793–3799.
2] G. W. Muller, R. Chen, S. Y. Huang, L. G. Corral, L. M.
Wong, R. T. Patterson, Y. Chen, G. Kaplan, D. I. Stir-
ling, Bioorg. Med. Chem. Lett. 1999, 9, 1625–1630.
3] A. F. Watson, J. Liu, K. Bennaceur, C. J. Drummond,
J. A. Endicott, B. T. Golding, R. J. Griffin, K. Haggerty,
X. Lu, J. M. McDonnell, D. R. Newell, M. E. M. Noble,
C. H. Revill, C. Riedinger, Q. Xu, Y. Zhao, J. Lunec,
I. R. Hardcastle, Bioorg. Med. Chem. Lett. 2011, 21,
5916–5919.
[
Conclusions
In summary, we have demonstrated the regioselective
synthesis of polysubstituted isoindolinones via the
Cp*RuCl ACHTUNGTRENNUNG( cod)-catalyzed cyclotrimerization of amide-
[
tethered diynes and monoynes. This cyclization is ef-
fective with a wide range of structurally diverse mon-
oynes and was demonstrated to work with a variety of
different diynes. We have also demonstrated that the
cyclization products could be converted into a range
of functionalized isoindolinones and a tetrasubstituted
benzene derivative.
[4] M. Uno, H. S. Ban, H. Nakamura, Bioorg. Med. Chem.
Lett. 2009, 19, 3166–3169.
[
5] S. Lee, C. Shinji, K. Ogura, M. Shimizu, S. Maeda, M.
Sato, M. Yoshida, Y. Hashimoto, H. Miyachi, Bioorg.
Med. Chem. Lett. 2007, 17, 4895–4900.
[
6] a) S. Das, D. Addis, L. R. Knçpke, U. Bentrup, K.
Junge, A. Brꢃckner, M. Beller, Angew. Chem. 2011,
Experimental Section
1
23, 9346–9350; Angew. Chem. Int. Ed. 2011, 50, 9180–
9
184; b) J. W. Wrigglesworth, B. Cox, G. C. Lloyd-
Full experimental details are provided in the Supporting In-
formation.
Jones, K. I. Booker-Milburn, Org. Lett. 2011, 13, 5326–
329; c) A. Bubar, P. Estey, M. Lawson, S. Eisler, J.
5
Org. Chem. 2012, 77, 1572–1578; d) C. Petronzi, S. Col-
larile, G. Croce, R. Filosa, P. De Caprariis, A. Peduto,
L. Palombi, V. Intintoli, A. Di Mola, A. Massa, Eur. J.
Org. Chem. 2012, 5357–5365; e) L. Shi, L. Hu, J. Wang,
X. Cao, H. Gu, Org. Lett. 2012, 14, 1876–1879.
Cp*RuCl ACHTUNGTRENNUNG( cod)-Catalyzed Cyclization of a Diyne and
a Monoyne
A solution of 6a (500 mg, 1.86 mmol) in CPME (11 mL) was
added dropwise over 3 h to a stirring solution of 1-hexyne
[
7] M. Fujioka, T. Morimoto, T. Tsumagari, H. Tanimoto,
9
3
a (0.43 mL, 300 mg, 3.7 mmol) and Cp*RuCl
mol%) in CPME (7.7 mL) at room temperature. The reac-
ACHTUNGTRENNUNG( cod) (21 mg,
Y. Nishiyama, K. Kakiuchi, J. Org. Chem. 2012, 77,
2
911–2923.
tion mixture was stirred for a further 13 h before being fil-
tered through a silica pad, eluting with ethyl acetate. The
solvent was removed under vacuum to give the crude prod-
uct, which was purified by flash column chromatography
[
[
8] D. M. Shacklady-McAtee, S. Dasgupta, M. P. Watson,
Org. Lett. 2011, 13, 3490–3593.
9] a) Y. Yamamoto, Curr. Org. Chem. 2005, 9, 503–519;
b) N. Agenet, O. Buisine, F. Slowinski, V. Gandon, C.
Aubert, M. Malacria, Org. React. 2007, 68, 1–302; c) W.
Hess, J. Treutwein, G. Hilt, Synthesis 2008, 3537–3562;
d) L. Zhou, S. Li, K.-i. Kanno, T. Takahashi, Heterocy-
cles 2010, 80, 725–738; e) P. A. Inglesby, P. A. Evans,
Chem. Soc. Rev. 2010, 39, 2791–2805; f) R. Hua,
M. V. A. Abrenica, P. Wang, Curr. Org. Chem. 2011, 15,
(
13:1 petrol:ethyl acetate) to give 2-benzyl-5-butyl-7-(trime-
thylsilyl)isoindolin-1-one 10a; yield: 428 mg (1.22 mmol,
6
2
1
7
2
1
6%); R =0.36 (6:1 petrol:ethyl acetate); IR (film): n
=
max
f
955 (m, CÀH), 2930 (m, CÀH), 1688 (s, C=O), 1454 (m),
À1
1
409 cm (m); H NMR (600 MHz, DMSO-d ): d=7.34–
6
.21 (7H, m, ArH), 4.68 (2H, s, CH N), 4.24 (2H, s, CH N),
2
2
.60 (2H, t, J=7.7, ArCH CH ), 1.51, (2H, m, ArCH CH ),
2
2
2
2
7
12–729; g) N. Weding, M. Hapke, Chem. Soc. Rev.
.26 (2H, m, CH CH ), 0.83 (3H, t, J=7.4, CH CH ), 0.34
2
3
3
2
3
2
011, 40, 4525–4538; h) G. Domꢄnguez, J. Pꢅrez-Cas-
1
[9H, s, Si
A
C
H
T
U
N
G
T
R
E
N
N
U
N
G
(CH ) ]; C NMR (125 MHz, DMSO-d ): d=
3
3
6
tells, Chem. Soc. Rev. 2011, 40, 3430–3444; i) M. R.
Shaaban, R. El-Sayed, A. H. M. Elwahy, Tetrahedron
1
1
68.5, 144.8, 142.1, 137.7, 136.9, 134.3, 134.0, 128.6, 127.6,
27.2, 123.7, 48.9, 45.4, 35.1, 33.2, 21.8, 13.7, À0.4; HR-MS
2
2
011, 67, 6095–6130; j) Y. Shibata, K. Tanaka, Synthesis
012, 44, 323–350; k) D. L. J. Broere, E. Ruijter, Syn-
+
+
(EI ): m/z=351.2011 [M] , C H ONSi requires 351.2013.
22 29
thesis 2012, 44, 2639–2672.
[
[
10] Y. Yamamoto, K. Kinpara, T. Saigoku, H. Nishiyama,
K. Itoh, Org. Biomol. Chem. 2004, 2, 1287–1294.
11] a) R. K. Henderson, C. Jimꢅnez-Gonzꢆlez, D. J. C.
Constable, S. R. Alston, G. G. A. Inglis, G. Fisher, J.
Sherwood, S. P. Binks, A. D. Curzons, Green Chem.
2011, 13, 854–862; b) T. Laird, Org. Process Res. Dev.
2012, 16, 1–2.
Acknowledgements
This work was supported by the Engineering and Physical
Sciences Research Council (Advanced Research Fellowship
EP/E052789/1), together with GlaxoSmithKline (Industrial
CASE Award) and the UCL PhD program in Drug Discov-
[12] Y. Yamamoto, R. Ogawa, K. Itoh, Chem. Commun.
2000, 549–550.
Adv. Synth. Catal. 2013, 355, 2353 – 2360
ꢀ 2013 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
2359