Sonogashira Alkynylation in Water under Microwave Irradiation
thesis (Ed.: E. Negishi), Wiley, Hoboken, 2002, vol, 2, p. 2957;
d) Aqueous-Phase Organometallic Catalysis: Concepts and Ap-
plications, 2nd ed. (Eds.: B. Cornils, W. Herrmann), Wiley-
VCH, Weinheim, Germany, 2004; e) K. H. Shaughnessy, R. B.
DeVasher, Curr. Org. Chem. 2005, 9, 585; f) S. Liu, J. Xiao, J.
Mol. Catal. A 2007, 270, 1; g) R. A. Sheldon, in: Organic Reac-
tions in Water: Principles, Strategies and Applications (Ed.:
U. M. Lindström), Blackwell Publishing Ltd, Oxford, 2007; h)
B. H. Lipshutz, S. Ghorai, Aldrichim. Acta 2008, 41, 59; i) J.-
P. Genêt, S. Darses, V. Michelet, Pure Appl. Chem. 2008, 80,
831; j) M. Carril, R. SanMartín, E. Domínguez, Chem. Soc.
Rev. 2008, 37, 639; k) K. H. Shaughnessy, Chem. Rev. 2009,
H2O (1.5 mL). The vessel was sealed with a pressure lock, and the
mixture was heated at 130 °C for 30 min with the aid of an initial
40 W MW irradiation in a CEM Discover MW reactor. After this
time, the reaction mixture was extracted with EtOAc (3ϫ 10 mL),
and the organic layers were washed with H2O (3ϫ 10 mL), dried
with MgSO4, filtered through Celite, and concentrated under re-
duced pressure. The crude residue was purified by preparative thin
layer chromatography (hexane) to obtain the corresponding pure
coupling compound (0.044 g, 76% yield).
Supporting Information (see footnote on the first page of this arti-
cle): Experimental procedures for the cross-coupling reactions as
well as spectroscopic data for all synthesized products.
ˇ
109, 643; l) B. H. Lipshutz, A. R. Abela, Z. V. Bosˇkovic´, T.
Nishikata, C. Duplais, A. Krasovskiy, Top. Catal. 2010, 53,
985; m) A. R. Abela, S. Huang, R. Moser, B. H. Lipshutz,
Chim. Oggi 2010, 28, 50; n) M. Lamblin, L. Nassar-Hardy, J.-
C. Hierso, E. Fouquet, F.-X. Felpin, Adv. Synth. Catal. 2010,
352, 33.
[8]
[9]
For representative Sonogashira couplings of aryl iodides in
water, see: a) S. Bhattacharya, S. Sengupta, Tetrahedron Lett.
2004, 45, 8733–8736; b) B. Liang, M. D. Dai, J. Chen, Z. Yang,
J. Org. Chem. 2005, 70, 391–393; c) M. Bakherad, A. Keivan-
loo, B. Bahramian, M. Hashemi, Tetrahedron Lett. 2009, 50,
1557–1559; d) D. Saha, R. Dey, B. C. Ranu, Eur. J. Org. Chem.
2010, 6067–6071.
For representative Sonogashira couplings of aryl bromides in
water, see: a) C. Nájera, J. Gil-Moltó, S. Karlström, L. R. Fal-
vello, Org. Lett. 2003, 5, 1451–1454; b) J. Gil-Moltó, C. Nájera,
Adv. Synth. Catal. 2006, 348, 1874–1882; c) B. H. Lipshutz,
D. W. Chung, B. Rich, Org. Lett. 2008, 10, 3793–3796; d) K.
Park, J.-M. You, S. Jeon, S. Lee, Eur. J. Org. Chem. 2013, 1973–
1978.
a) C. Wolf, R. Lerebours, Org. Biomol. Chem. 2004, 2, 2161;
b) E. A. Reddy, D. K. Barange, A. Islam, K. Mukkanti, M.
Pal, Tetrahedron 2008, 64, 7143.
Palladacycles: Synthesis Characterization and Applications
(Eds.: J. Dupont, M. Pfeffer), Wiley-VCH, Weinheim, Ger-
many, 2008.
For reviews on the use of oxime palladacycles as precatalysts
in cross-coupling reactions, see: a) D. A. Alonso, L. Botella, C.
Nájera, M. C. Pacheco, Synthesis 2004, 1713; b) E. Alacid,
D. A. Alonso, L. Botella, C. Nájera, M. C. Pacheco, Chem.
Rec. 2006, 6, 117; c) D. A. Alonso, C. Nájera, Chem. Soc. Rev.
2010, 39, 2891.
L. Botella, C. Nájera, Angew. Chem. 2002, 114, 187; Angew.
Chem. Int. Ed. 2002, 41, 179–181.
J. F. Cívicos, D. A. Alonso, C. Nájera, Adv. Synth. Catal. 2012,
354, 2771–2776.
Previous studies in our group have shown that palladacycle 1b
is the most effective for the Sonogashira coupling of aryl brom-
ides and iodides in organic solvents: D. A. Alonso, C. Nájera,
M. C. Pacheco, Adv. Synth. Catal. 2003, 345, 1146–1158.
X. Pu, H. Li, T. J. Colacot, J. Org. Chem. 2013, 78, 658 and
references cited therein.
For a palladium-catalyzed head-to-head dimerization of ter-
minal alkynes, see: a) M. Rubina, V. Gevorgyan, J. Am. Chem.
Soc. 2001, 123, 11107–11108; For an iron-catalyzed head-to-
head dimerization of terminal alkynes, see: b) G. C. Midya, S.
Paladhi, K. Dhara, J. Dash, Chem. Commun. 2011, 47, 6698–
6700; for iridium-catalyzed head-to-head dimerization of ter-
minal alkynes, see: c) T. Ohmura, S. Yorozuya, Y. Yamamoto,
N. Miyaura, Organometallics 2000, 19, 365–367; d) C. D. For-
syth, W. J. Kerr, L. C. Peterson, Synlett 2013, 587–590. For a
nickel-catalyzed head-to-head dimerization of terminal al-
kynes, see: e) S. Ogoshi, M. Ueta, M. Oka, H. Kurosawa,
Chem. Commun. 2004, 2732–2733; For a rhodium-catalyzed
head-to-head dimerization of terminal alkynes, see: T. Katagiri,
H. Tsurugi, T. Satoh, M. Miura, Chem. Commun. 2008, 3405–
3407.
Acknowledgments
Financial support from the Ministerio de Economía y Competitivi-
dad (MINECO) (project CTQ2010-20387), Consolider INGENIO
(project 2010 CSD2007-00006), Fondos Europeos para el Desar-
rollo Regional (FEDER), the Generalitat Valenciana (project PRO-
METEO/2009/038), and the University of Alicante is acknowl-
edged.
[1] a) Metal-Catalyzed Cross-Coupling Reactions, (Eds.: F. Dieder-
ich, P. J. Stang), Wiley-VCH, Weinheim, Germany, 1998; b)
Handbook of Organopalladium Chemistry for Organic Synthesis
(Ed.: E. Negishi), Wiley-Interscience, New York, 2002; c)
Cross-Coupling Reactions. A Practical Guide (Ed.: N. Miyaura),
Springer, Berlin, 2002; d) J. Tsuji, Palladium Reagents and Cata-
lysts. Innovations in Organic Synthesis Wiley, Chichester, UK,
2004; e) V. Farina, N. Miyaura, S. L. Buchwald, Adv. Synth.
Catal. 2004, 346, 1505; f) Metal-Catalyzed Cross-Coupling Re-
actions, 2nd ed. (Eds.: F. Diederich, A. de Meijere), Wiley-
VCH, Weinheim, Germany, 2004; g) E. Negishi, Bull. Chem.
Soc. Jpn. 2007, 80, 233; h) Transition Metals for Organic Syn-
thesis Building Blocks and Fine Chemicals (Eds.: M. Beller, C.
Bolm), Wiley-VCH, Weinheim, Germany, 1998; i) Transition
Metals for Organic Synthesis Building Blocks and Fine Chemi-
cals, 2nd ed. (Eds.: M. Beller, C. Bolm), Wiley-VCH,
Weinheim, Germany, 2004.
[2] For reviews, see: a) K. Sonogashira, J. Organomet. Chem. 2002,
653, 46; b) E.-i. Negishi, L. Anastasia, Chem. Rev. 2003, 103,
1979; c) R. Chinchilla, C. Nájera, Chem. Rev. 2007, 107, 874;
d) H. Doucet, J.-C. Hierso, Angew. Chem. 2007, 119, 850; An-
gew. Chem. Int. Ed. 2007, 46, 834; e) H. Plenio, Angew. Chem.
2008, 120, 7060; Angew. Chem. Int. Ed. 2008, 47, 6954; f) R.
Chinchilla, C. Nájera, Chem. Soc. Rev. 2011, 40, 5084; g) N. M.
Jenny, M. Mayor, T. R. Eaton, Eur. J. Org. Chem. 2011, 4965.
[3] a) N. Weibel, S. Grunder, M. Mayor, Org. Biomol. Chem. 2007,
5, 2343; b) K. C. Nicolaou, P. G. Bulger, D. Sarlah, Angew.
Chem. 2005, 117, 4516; Angew. Chem. Int. Ed. 2005, 44, 4442;
c) M. Kivala, F. Diederich, Pure Appl. Chem. 2008, 80, 411.
[4] Green Chemistry and Catalysis (Eds.: R. A. Sheldon, I. Arends,
U. Hanefeld), Wiley-VCH, Weinheim, Germany, 2007.
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[5] D. A. Alonso, C. Nájera, in: Science of Synthesis Water in Or-
ganic Synthesis (Ed.: S. Kobayashi), Thieme, Stuttgart, Ger-
many, 2012, vol. 2011/7, p. 535.
[6] J. F. Cívicos, D. A. Alonso, C. Nájera, Adv. Synth. Catal. 2013,
355, 203–208, and references cited therein.
[7] a) Aqueous-Phase Organometallic Catalysis (Eds.: B. Cornils,
W. Herrmann), Wiley-VCH, Weinheim, Germany 1998; b) F.
Joó, Aqueous Organometallic Catalysis, Kluwer Academic Pub-
lishers, Dordrecht, 2001; c) I. P. Beletskaya, A. V. Cheprakov,
in: Handbook of Organopalladium Chemistry for Organic Syn-
Eur. J. Org. Chem. 2013, 5864–5870
© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
5869