Journal of the American Chemical Society
COMMUNICATION
Ethylene obtained from natural gas cracking contains a small
amount of acetylene as an impurity, which can serve as a catalyst
poison during ethylene polymerization and also lower the quality
of the resulting polyethylene. In addition, acetylene can form
explosive metal acetylides. It is thus imperative that acetylene in
the ethylene product be reduced to an acceptable level. Current
main commercial approaches to eliminate acetylene in crude
ethylene include partial hydrogenation and solvent extraction.
The former process suffers from the need for a noble-metal
catalyst and the loss of olefins due to the overhydrogenation to
paraffins, while the latter is also disadvantageous in terms of
technical and economical aspects because of the low selectivities
for acetylene over olefins and the significant loss of solvent after
multiple operations. The realization of microporous HOF-1a
with its extraordinarily high capability for C H /C H separation
Iremonger, S. S.; Shimizu, G. K. H.; Boyd, P. G.; Alavi, S.; Woo, T. K. Science
2010, 330, 650. (i) Seo, J. S.; Whang, D.; Lee, H.; Jun, S. I.; Oh, J.; Jeon, Y. J.;
Kim, K. Nature 2000, 404, 982. (j) Zhao, X.; Xiao, B.; Fletcher, A. J.;
Thomas, K. M.; Bradshaw, D.; Rosseinsky, M. J. Science 2004, 306, 1012.
(
1
(
k) Caskey, S. R.; Wong-Foy, A. G.; Matzger, A. J. J. Am. Chem. Soc. 2008,
30, 10870. (l) An, J.; Geib, S. J.; Rosi, N. L. J. Am. Chem. Soc. 2010, 132, 38.
m) Ma, S.; Zhou, H.-C. Chem. Commun. 2010, 46, 44. (n) Chen, S.; Zhang,
J.; Wu, T.; Feng, P.; Bu, X. J. Am. Chem. Soc. 2009, 131, 16027. (o) Zhang,
J.-P.; Chen, X.-M. J. Am. Chem. Soc. 2009, 131, 5516. (p) Li, K.; Olson,
D. H.; Seidel, J.; Emge, T. J.; Gong, H.; Zeng, H.; Li, J. J. Am. Chem. Soc.
2009, 131, 10368. (q) Chen, B.; Xiang, S.; Qian, G. Acc. Chem. Res. 2010,
43, 1115.(r) Zhang, Z.; Xiang, S.; Chen, B.; , CrystEngComm [Online early
access]. DOI: 10.1039/c1ce05437f. Published Online: July 11, 2011.
(
5) Kuznicki, S. M.; Bell, V. A.; Nair, S.; Hillhouse, H. W.; Jacubinas,
R. M.; Braunbarth, C. M.; Toby, B. H.; Tsapatsis, M. Nature 2001,
12, 720.
6) (a) Rosi, N. L.; Eckert, J.; Eddaoudi, M.; Vodak, D. T.; Kim, J.;
4
2
2
2 4
(
might lead to the development of revolutionary C H /C H gas
2
2
2 4
O’Keeffe, M.; Yaghi, O. M. Science 2003, 300, 1127. (b) Murray, L. J.;
Dinc ꢁa , M.; Long, J. R. Chem. Soc. Rev. 2009, 38, 1294. (c) Wu, H.; Zhou,
W.; Yildirim, T. J. Am. Chem. Soc. 2009, 131, 4995. (d) Lin, X.; Telepeni,
I.; Blake, A. J.; Dailly, A.; Brown, C. M.; Simmons, J. M.; Zoppi, M.;
Walker, G. S.; Thomas, K. M.; Mays, T. J.; Hubberstey, P.; Champness,
N. R.; Schroder, M. J. Am. Chem. Soc. 2009, 131, 2159.
separation processes with the implementation of pressure-swing
adsorption (PSA) and temperature-swing adsorption (TSA) in
the near future.
In summary, we have reported the first example of a micro-
porous hydrogen-bonded organic frameworks (HOF) with
permanent porosity and the capacity for extraordinarily highly
selective adsorptive separation of C H and C H at ambient
(7) http://www.ecofuel-world-tour.com (accessed July 15, 2011).
(8) http://www.basf.com/group/pressrelease/P-10-428 (accessed
2
2
2 4
July 15, 2011).
temperature. Although it is very difficult to stabilize HOFs and
thus to establish their permanent porosities, the unique features
of such microporous HOFs, such as framework flexibility, easy
purification and regeneration, and high thermal stability, might
surpass those of traditional microporous zeolite and metalꢀ
organic framework materials for use in industrial gas separation.
It is expected that this work will generate a resurgence of the
extensive interest in microporous HOFs for their recognition of
small molecules and thus applications in gas separation.
(9) (a) Venkataraman, D.; Lee, S.; Zhang, J.; Moore, J. S. Nature
1
994, 371, 591. (b) Wuest, J. D. Chem. Commun. 2005, 5830. (c) Perron,
ꢂ
M.-E.; Monchamp, F.; Duval, H.; Boils-Boissier, D.; Wuest, J. D. Pure
Appl. Chem. 2004, 76, 1345. (d) Simard, M.; Su, D.; Wuest, J. D. J. Am.
Chem. Soc. 1991, 113, 4696. (e) Wang, X.; Simard, M.; Wuest, J. D. J. Am.
Chem. Soc. 1994, 116, 12119. (f) Fournier, J.-H.; Maris, T.; Wuest, J. D.;
Guo, W.; Galoppini, E. J. Am. Chem. Soc. 2003, 125, 1002. (g) Malek, N.;
Maris, T.; Simard, M.; Wuest, J. D. J. Am. Chem. Soc. 2005, 127, 5910. (h)
Saied, O.; Maris, T.; Wang, X.; Simard, M.; Wuest, J. D. J. Am. Chem. Soc.
2
005, 127, 10008. (i) Brunet, P.; Demers, E.; Maris, T.; Enright, G. D.;
Wuest, J. D. Angew. Chem., Int. Ed. 2003, 42, 5303. (j) Malek, N.; Maris,
T.; Perron, M.-E.; Wuest, J. D. Angew. Chem., Int. Ed. 2005, 44, 4021. (k)
’
ASSOCIATED CONTENT
ꢂ
Endo, K.; Sawaki, T.; Koyanagi, M.; Kobayashi, K.; Masuda, H.; Aoyama,
Y. J. Am. Chem. Soc. 1995, 117, 8341. (l) Aoyama, Y.; Endo, K.; Anzai, T.;
Yamaguchi, Y.; Sawaki, T.; Kobayashi, K.; Kanehisa, N.; Hashimoto, H.;
Kai, Y.; Masuda, H. J. Am. Chem. Soc. 1996, 118, 5562. (m) Kobayashi,
K.; Shirasaka, T.; Sato, A.; Horn, E.; Furukawa, N. Angew. Chem., Int. Ed.
S
Supporting Information. Experimental details, TGA
b
data, PXRD patterns, NMR characterization, and virial analysis.
This material is available free of charge via the Internet at http://
pubs.acs.org.
1
999, 38, 3483. (n) Kobayashi, K.; Sato, A.; Sakamoto, S.; Yamaguchi, K.
’
AUTHOR INFORMATION
J. Am. Chem. Soc. 2003, 125, 3035. (o) Bhyrappa, P.; Wilson, S. R.;
Suslick, K. S. J. Am. Chem. Soc. 1997, 119, 8492. (p) Kolotuchin, S. V.;
Fenlon, E. E.; Wilson, S. R.; Loweth, C. J.; Zimmerman, S. C. Angew.
Chem., Int. Ed. Engl. 1995, 34, 2654. (q) G €o rbitz, C. H.; Nilsen, M.;
Szeto, K.; Tangen, L. W. Chem. Commun. 2005, 4288.
Corresponding Author
(
10) Brunet, P.; Simard, M.; Wuest, J. D. J. Am. Chem. Soc. 1997,
’
ACKNOWLEDGMENT
1
19, 2737.
(
(
11) Hoskins, B. F.; Robson, R. J. Am. Chem. Soc. 1989, 111, 5962.
12) (a) Kondo, M.; Yoshitomi, T.; Seki, K.; Matsuzaka, H.;
This work was supported by Award AX-1730 from the Welch
Foundation (B.C.).
Kitagawa, S. Angew. Chem., Int. Ed. Engl. 1997, 36, 1725. (b) Li, H.;
Eddaoudi, M.; Groy, T. L.; Yaghi, O. M. J. Am. Chem. Soc. 1998,
20, 8571. (c) Li, H.; Eddaoudi, M.; O’Keeffe, M.; Yaghi, O. M. Nature
’
REFERENCES
1
(
(
(
1) Corma, A. Chem. Rev. 1997, 97, 2373.
2) Davis, M. E. Nature 2002, 417, 813.
3) Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Frederickson, G. H.;
1999, 402, 276. (d) Chui, S. S.-Y.; Lo, S. M.-F.; Charmant, J. P. H.;
Orpen, A. G.; Williams, I. D. Science 1999, 283, 1148.
(13) (a) Ng, M. C. C.; Craig, D. J.; Harper, J. B.; van Eijck, L.; Stride,
J. A. Chem.—Eur. J. 2009, 15, 6569. (b) Hoskins, B. F.; Robson, R. J. Am.
Chem. Soc. 1990, 112, 1546.
Chmelka, B. F.; Stucky, G. D. Science 1998, 279, 548.
(
4) (a) Eddaoudi, M.; Moler, D. B.; Li, H.; Chen, B.; Reineke, T. M.;
O’Keeffe, M.; Yaghi, O. M. Acc. Chem. Res. 2001, 34, 319. (b) Kitagawa,
S.; Kitaura, R.; Noro, S.-I. Angew. Chem., Int. Ed. 2004, 43, 2334. (c)
F ꢀe rey, G. Chem. Soc. Rev. 2008, 37, 191. (d) Lee, J.; Farha, O. K.; Roberts,
J.; Scheidt, K. A.; Nguyen, S. T.; Hupp, J. T. Chem. Soc. Rev. 2009,
(14) (a) Chen, B.; Liang, C.; Yang, J.; Contreras, D. S.; Clancy, Y. L.;
Lobkovsky, E. B.; Yaghi, O. M.; Dai, S. Angew. Chem., Int. Ed. 2006,
45, 1390. (b) Horike, S.; Shimomura, S.; Kitagawa, S. Nat. Chem. 2009,
1, 695.
3
8, 1450. (e) Ma, L.; Abney, C.; Lin, W. Chem. Soc. Rev. 2009, 38, 1248.
(15) Xiang, S.; Zhang, Z.; Zhao, C.-G.; Hong, K.; Zhao, X.; Ding,
D.-L.; Xie, M.-H.; Wu, C.-D.; Gill, R.; Thomas, K. M.; Chen, B. Nat.
Commun. 2010, 2, 204.
(f) Li, J.-R.; Kuppler, R. J.; Zhou, H.-C. Chem. Soc. Rev. 2009, 38, 1477.
g) Jiang,H.-L.;Xu,Q.Chem. Commun. 2011,47, 3351. (h) Vaidhyanathan, R.;
(
1
4572
dx.doi.org/10.1021/ja2066016 |J. Am. Chem. Soc. 2011, 133, 14570–14573