Communication
ChemComm
Table 2 HPAF-TEMPO catalyzed aerobic oxidation of various alcohols
Notes and references
1 (a) J. M. Lee and A. I. Cooper, Chem. Rev., 2020, 120, 2171–2214;
(b) D. Wu, F. Xu, B. Sun, R. Fu, H. He and K. Matyjaszewski, Chem.
Rev., 2012, 112, 3959–4015; (c) Y. Xu, S. Jin, H. Xu, A. Nagai and
D. Jiang, Chem. Soc. Rev., 2013, 42, 8012–8031.
2 (a) K. Huang, J.-Y. Zhang, F. Liu and S. Dai, ACS Catal., 2018, 8,
9079–9102; (b) A. G. Slater and A. I. Cooper, Science, 2015,
348, aaa8075; (c) J. Wu, F. Xu, S. Li, P. Ma, X. Zhang, Q. Liu, R. Fu
and D. Wu, Adv. Mater., 2019, 31, e1802922.
3 (a) D. Taylor, S. J. Dalgarno, Z. Xu and F. Vilela, Chem. Soc. Rev.,
2020, 49, 3981–4042; (b) Y. Zhang, B. Li and S. Ma, Chem. Commun.,
2014, 50, 8507–8510.
4 (a) S. Wertz and A. Studer, Green Chem., 2013, 15, 3116–3134;
(b) R. A. Sheldon and I. W. C. E. Arends, Adv. Synth. Catal., 2004,
346, 1051–1071.
5 (a) J. M. Hoover, B. L. Ryland and S. S. Stahl, ACS Catal., 2013, 3,
2599–2605; (b) H. A. Beejapur, Q. Zhang, K. Hu, L. Zhu, J. Wang and
Z. Ye, ACS Catal., 2019, 9, 2777–2830; (c) X. He, Z. Shen, W. Mo,
N. Sun, B. Hu and X. Hu, Adv. Syn. Catal., 2009, 351, 89–92.
6 (a) L. Di and Z. Hua, Adv. Synth. Catal., 2011, 353, 1253–1259;
Reaction conditions: alcohol (0.28 mmol), catalyst (0.014 mmol), TBN
(20 mol%); PhCF3 (0.5 mL). The conversion values in the brackets were
achieved by using non-hollow PAF-TEMPO microspheres as catalysts.
a
b
(b) B. Karimi and E. Farhangi, Chem.
– Eur. J., 2011, 17,
Selectivity. Isolated yield.
6056–6060; (c) A. Das and S. S. Stahl, Angew. Chem., Int. Ed., 2017,
56, 8892–8897.
7 L. Li, R. Matsuda, I. Tanaka, H. Sato, P. Kanoo, H. J. Jeon, M. L. Foo,
A. Wakamiya, Y. Murata and S. Kitagawa, J. Am. Chem. Soc., 2014,
136, 7543–7546.
8 (a) J. L. Zhuang, X. Y. Liu, Y. Zhang, C. Wang, H. L. Mao, J. Guo,
X. Du, S. B. Zhu, B. Ren and A. Terfort, ACS Appl. Mater. Interfaces,
2019, 11, 3034–3043; (b) M. Liu, B. Zhou, L. Zhou, Z. Xie, S. Li and
L. Chen, J. Mater. Chem. A, 2018, 6, 9860–9865; (c) B. Zhou, X. Hu,
G. Zeng, S. Li, Z. Wen and L. Chen, ChemSusChem, 2017, 10,
2955–2961; (d) K. M. Zwolinski and M. J. Chmielewski, ACS Appl.
Mater. Interfaces, 2017, 9, 33956–33967.
9 X. Wang, J. Feng, Y. Bai, Q. Zhang and Y. Yin, Chem. Rev., 2016, 116,
10983–11060.
10 (a) W. Huang, Z. J. Wang, B. C. Ma, S. Ghasimi, D. Gehrig, F. Laquai,
K. Landfester and K. A. I. Zhang, J. Mater. Chem. A, 2016, 4,
7555–7559; (b) H. J. Lee, W. Cho and M. Oh, Chem. Commun.,
2012, 48, 221–223; (c) T. Liu, L. Zhang, B. Cheng, W. You and
J. Yu, Chem. Commun., 2018, 54, 3731–3734.
11 (a) J. H. Ko, N. Kang, N. Park, H. W. Shin, S. Kang, S. M. Lee,
H. J. Kim, T. K. Ahn and S. U. Son, ACS Macro Lett., 2015, 4, 669–672;
(b) S. Hong, J. Yoo, N. Park, S. M. Lee, J. G. Park, J. H. Park and
S. U. Son, Chem. Commun., 2015, 51, 17724–17727; (c) N. Kang,
J. H. Park, M. Jin, N. Park, S. M. Lee, H. J. Kim, J. M. Kim and
S. U. Son, J. Am. Chem. Soc., 2013, 135, 19115–19118.
12 (a) N. Park, Y. N. Lim, S. Y. Kang, S. M. Lee, H. J. Kim, Y.-J. Ko,
B. Y. Lee, H.-Y. Jang and S. U. Son, ACS Macro Lett., 2016, 5, 1322–1326;
(b) J. Y. Jang, T. M. D. Le, J. H. Ko, Y.-J. Ko, S. M. Lee, H. J. Kim,
J. H. Jeong, T. Thambi, D. S. Lee and S. U. Son, Chem. Mater., 2018, 31,
300–304; (c) K. Cho, J. Yoo, H. W. Noh, S. M. Lee, H. J. Kim, Y. J. Ko,
H. Y. Jang and S. U. Son, J. Mater. Chem. A, 2017, 5, 8922–8926.
However, the oxidation of aliphatic alcohols requires longer
time to achieve moderate yields (entries 10–12), and 34% of
n-hexanoic acid was found in the case of n-hexanol.
In summary, we demonstrate a bottom-up approach to synthe-
size TEMPO radical decorated hollow PAF, HPAF-TEMPO, by
using TEMPO radical functionalized monomers and SiO2 as
templates. The catalytic activity of the HPAF-TEMPO outperforms
the non-hollow PAF-TEMPO microspheres toward the oxidation of
a broad range of alcohols, thanks to their unique hollowed
nanostructures. We are currently exploring the template synthesis
of hollow and bifunctional PAFs and CMPs for enantioselective or
photo-driven organocatalysis by the incorporation of chiral or
photoactive moieties (e.g., L-proline and benzothiadiazole) into
the frameworks.
This work was supported the National Key Research and
Development Program of China (grant 2017YFF0204602), the
National Natural Science Foundation of China (No. 21861013),
Natural Science Foundation of Guizhou Province (No. 20185769),
Department of Education of Guizhou Province (No. YJSCXJH
(2019)045), and State Key Laboratory of Physical Chemistry of
Solid Surfaces (Xiamen University, No. 201823).
¨
13 W. Stober, A. Fink and E. Bohn, J. Colloid Interface Sci., 1968, 26,
62–69.
14 (a) M. F. Ottaviani, M. Garcia-Garibay and N. J. Turro, Colloids Surf.,
A, 1993, 321–332; (b) A. M. Sheveleva, D. I. Kolokolov, A. A.
Gabrienko, A. G. Stepanov, S. A. Gromilov, I. K. Shundrina,
R. Z. Sagdeev, M. V. Fedin and E. G. Bagryanskaya, J. Phys. Chem.
Lett., 2014, 5, 20–24.
Conflicts of interest
There are no conflicts to declare.
910 | Chem. Commun., 2021, 57, 907--910
This journal is © The Royal Society of Chemistry 2021