Journal of the American Chemical Society
Article
I.; Hayashi, T. Org. Lett. 2004, 6, 3425−3427. (c) Tietze, L. F.; Ila, H.;
Bell, H. P. Chem. Rev. 2004, 104, 3453−3561. (d) Hayashi, T.;
Tokunaga, N.; Okamoto, K.; Shintani, R. Chem. Lett. 2005, 34, 1480−
1481. (e) Nakao, Y.; Chen, J.; Imanaka, H.; Hiyama, T.; Ichikawa, Y.;
Duan, W.; Shintani, R.; Hayashi, T. J. Am. Chem. Soc. 2007, 129,
9137−9143. (f) Edwards, H. J.; Hargrave, J. D.; Penrose, S. D.; Frost,
C. G. Chem. Soc. Rev. 2010, 39, 2093−2105. (g) Menard, F.; Perez, D.;
Roman, D. S.; Chapman, T. M.; Lautens, M. J. Org. Chem. 2010, 75,
4056−4068. (h) Nishimura, T.; Wang, J.; Nagaosa, M.; Okamoto, K.;
Shintani, R.; Kwong, F.; Yu, W.; Chan, A. S. C.; Hayashi, T. J. Am.
Chem. Soc. 2010, 132, 464−465. (i) Tian, P.; Dong, H.; Lin, G. ACS
Catal. 2012, 2, 95−119. (j) Howell, G. P. Org. Process Res. Dev. 2012,
(c) Hamashima, Y.; Somei, H.; Shimura, Y.; Tamura, T.; Sodeoka,
M. Org. Lett. 2004, 6, 1861−1864. (d) Mohr, J. T.; Hong, A. Y.; Stoltz,
B. M. Nat. Chem. 2009, 1, 359−369. (e) Hamashima, Y.; Tamura, T.;
Suzuki, S.; Sodeoka, M. Synlett 2009, 1631−1634. (f) Hamashima, Y.;
Suzuki, S.; Tamura, T.; Somei, H.; Sodeoka, M. Chem.Asian J. 2011,
6, 658−668.
(16) Shibata, K.; Chatani, N. Org. Lett. 2014, 16, 5148−5151.
(17) [Rh(cod)OAc]2 as a hydroformylation precatalyst: (a) Burke, S.
D.; Cobb, J. E. Tetrahedron Lett. 1986, 27, 4237−4240. (b) Burke, S.
D.; Cobb, J. E.; Takeuchi, K. J. Org. Chem. 1990, 55, 2138−2151.
(c) da Silva, A. C.; de Oliveira, K. C. B.; Gusevskaya, E. V.; dos Santos,
E. N. J. Mol. Catal. A: Chem. 2002, 179, 133−141. (d) Barros, H. J. V.;
Ospina, M. L.; Arguello, E.; Rocha, W. R.; Gusevskaya, E. V.; dos
Santos, E. N. J. Organomet. Chem. 2003, 671, 150−157. (e) Barros, H.
16, 1258−1272. (k) Brawn, R. A.; Guimaraes, C. R. W.; McClure, K.
̃
F.; Liras, S. Org. Lett. 2013, 15, 3424−3427. (l) Liu, S.; Zhou, J. Chem.
Commun. 2013, 49, 11758−11760. (m) Mei, T.; Werner, E. W.;
Burckle, A. J.; Sigman, M. S. J. Am. Chem. Soc. 2013, 135, 6830−6833
(functionally an asymmetric hydroarylation reaction). (n) So, C. M.;
Kume, S.; Hayashi, T. J. Am. Chem. Soc. 2013, 135, 10990−10993.
(5) For selected reviews and examples of transition-metal-catalyzed,
asymmetric hydroarylation of olefins via directed C−H activation, see:
(a) Aufdenblatten, R.; Diezi, S.; Togni, A. Monatsh. Chem. 2000, 131,
1345−1350. (b) Thalji, R. K.; Ellman, J. A.; Bergman, R. G. J. Am.
Chem. Soc. 2004, 126, 7192−7193. (c) Tsuchikama, K.; Kasagawa, M.;
Hashimoto, Y.; Endo, K.; Shibata, T. J. Organomet. Chem. 2008, 693,
J. V.; Guimaraes, C. C.; dos Santos, E. N.; Gusevskaya, E. V.
̃
Organometallics 2007, 26, 2211−2218. (f) Barros, H. J. V.; Guimaraes,
̃
C. C.; dos Santos, E. N.; Gusevskaya, E. V. Catal. Commun. 2007, 8,
747−750. (g) Barros, H. J. V.; da Silva, J. G.; Guimaraes, C. C.; dos
̃
Santos, E. N.; Gusevskaya, E. V. Organometallics 2008, 27, 4523−4531.
As a hydrogenation precatalyst: (h) Nagy-Magos, Z.; Vastag, S.; Heil,
B.; Marko,
́
L. J. Organomet. Chem. 1979, 171, 97−102.
As a
hydroboration precatalyst: (i) Endo, K.; Hirokami, M.; Shibata, T.
Organometallics 2008, 27, 5390−5393. As a precatalyst for cine
substitution of vinyl acetates and boronic acids: (j) Yu, J.; Shimizu, R.;
Kuwano, R. Angew. Chem., Int. Ed. 2010, 49, 6396−6399. (k) Kuwano,
R. J. Syn. Org. Chem. Jpn. 2011, 69, 1263−1270.
3939−3942. (d) Hyster, T. K.; Knorr, L.; Ward, T. R.; Rovis, T. Science
̈
2012, 338, 500−503. (e) Ye, B.; Cramer, N. Science 2012, 338, 504−
506. (f) Pan, S.; Shibata, T. ACS Catal. 2013, 3, 704−712. (g) Zheng,
C.; You, S. RSC Adv. 2014, 4, 6173−6214. (h) Ye, B.; Donets, P. A.;
Cramer, N. Angew. Chem., Int. Ed. 2014, 53, 507−511.
(18) Chatt, J.; Venanzi, L. M. J. Chem. Soc. 1957, 4735−4741.
(19) We deposited the crystal structure of [Rh(cod)OAc]2 to the
Cambridge Crystallographic Data Centre: CCDC 936197
(20) (a) van Leeuwen, P. W. N. M.; Kamer, P. C. J.; Reek, J. N. H.
Pure Appl. Chem. 1999, 71, 1443−1452. (b) van Leeuwen, P. W. N.
M.; Kamer, P. C. J.; Reek, J. N. H.; Dierkes, P. Chem. Rev. 2000, 100,
2741−2770. (c) Kamer, P. C. J.; van Leeuwen, P. W. N. M.; Reek, J. N.
H. Acc. Chem. Res. 2001, 34, 895−904. (d) Birkholz, M.; Freixab, Z.;
van Leeuwen, P. W. N. M. Chem. Soc. Rev. 2009, 38, 1099−1118.
(e) Shen, Z.; Dornan, P. K.; Khan, H. A.; Woo, T. K.; Dong, V. M. J.
Am. Chem. Soc. 2009, 131, 1077−1091. (f) Ito, S.; Itoh, T.; Nakamura,
M. Angew. Chem., Int. Ed. 2011, 50, 454−457.
(6) Wiedemann, S. H.; Lewis, J. C.; Ellman, J. A.; Bergman, R. G. J.
Am. Chem. Soc. 2006, 128, 2452−2462.
(7) (a) Wilson, R. M.; Thalji, R. K.; Bergman, R. G.; Ellman, J. A.
Org. Lett. 2006, 8, 1745−1747. (b) Rech, J. C.; Yato, M.; Duckett, D.;
Ember, B.; LoGrasso, P. V.; Bergman, R. G.; Ellman, J. A. J. Am. Chem.
Soc. 2007, 129, 490−491. (c) Tsai, A. S.; Wilson, R. M.; Harada, H.;
Bergman, R. G.; Ellman, J. A. Chem. Commun. 2009, 3910−3912.
(8) Pan, S.; Ryu, N.; Shibata, T. J. Am. Chem. Soc. 2012, 134, 17474−
17477.
(9) Sevov, C. S.; Hartwig, J. F. J. Am. Chem. Soc. 2013, 135, 2116−
2119.
(21) Dppe has a natural bite angle of 86° vs 93° for Binap: ref 20d.
(22) Segphos is known to have a smaller dihedral angle than Binap:
(10) Song, G.; O, W. W. N.; Hou, Z. J. Am. Chem. Soc. 2014, 136,
12209−12212.
̂
Jeulin, S.; de Paule, S. D.; Ratovelomanana-Vidal, V.; Genet, J.;
Champion, N.; Dellis, P. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 5799−
5804. For a demonstration of the correlation between dihedral angle
and natural bite angle, see: Raebiger, J. W.; Miedaner, A.; Curtis, C. J.;
Miller, S. M.; Anderson, O. P.; DuBois, D. L. J. Am. Chem. Soc. 2004,
126, 5502−5514.
(11) (a) Razavi, H.; Palaninathan, S. K.; Powers, E. T.; Wiseman, R.
L.; Purkey, H. E.; Mohamedmohaideen, N. N.; Deechongkit, S.;
Chiang, K. P.; Dendle, M. T. A.; Sacchettini, J. C.; Kelly, J. W. Angew.
Chem., Int. Ed. 2003, 42, 2758−2761. (b) Plemper, R. K.; Erlandson,
K. J.; Lakdawala, A. S.; Sun, A.; Prussia, A.; Boonsombat, J.; Aki-Sener,
E.; Yalcin, I.; Yildiz, I.; Temiz-Arpaci, O.; Tekiner, B.; Liotta, D. C.;
Snyder, J. P.; Compans, R. W. Proc. Natl. Acad. Sci. U.S.A. 2004, 101,
5628−5633. (c) McKee, M. L. Ph.D. Dissertation, University of Texas
at Austin, 2007. (d) McKee, M. L.; Kerwin, S. M. Bioorg. Med. Chem.
2008, 16, 1775−1783. (e) Sommer, P. S. M.; Almeida, R. C.;
(23) Substrate 1b (vs 1a) was chosen for the experiment, since the
C−H resonance of the azole is easily resolved from that of 1c.
(24) Chang et al. also see deuterium scrambling in the products of a
reaction between ethyl acrylate and a mixture of proteo- and deutero-
pyridine oxides (ref 3j.).
(25) There could also exist irreversible steps prior to the turnover
limiting step of reactive substrate 1c, but such an assumption is not
required.
Schneider, K.; Beil, W.; Sussmuth, R. D.; Fiedler, H. J. Antibiot. 2008,
̈
61, 683−686. (f) Gautam, M. K.; Sonal Sharma, N. K.; Priyanka Jha, K.
(26) Bocian, W.; Jazwin
46, 156−165.
ski, J.; Sadlej, A. Magn. Reson. Chem. 2008,
K. Int. J. Chem. Technol. Res. 2012, 4, 640−650.
́
(12) Phosphorous Ligands in Asymmetric Catalysis: Synthesis and
(27) We provide no rigorous evidence that MI is turnover limiting.
Yet turnover limiting MI is consistent with the positive dependence of
product yield on acrylate concentration (Table 1) as well as with the
observation that bulky acrylates react more sluggishly than less
hindered ones (Chart 2).
Applications; Borner, A., Ed.; Wiley-VCH: Weinheim, 2008.
̈
(13) Hartwig, J. Organotransition Metal Chemistry; University Science
Books: Sausalito, CA, 2010.
(14) (a) Reetz, M. T.; Moulin, D.; Gosberg, A. Org. Lett. 2001, 3,
4083−4085. (b) Moss, R. J.; Wadsworth, K. J.; Chapman, C. J.; Frost,
C. G. Chem. Commun. 2004, 1984−1985. (c) Sibi, M. P.; Tatamidani,
H.; Patil, K. Org. Lett. 2005, 7, 2571−2573. (d) Frost, C. G.; Penrose,
S. D.; Lambshead, K.; Raithby, P. R.; Warren, J. E.; Gleave, R. Org.
Lett. 2007, 9, 2119−2122. (e) Navarre, L.; Martinez, R.; Genet, J.;
Darses, S. J. Am. Chem. Soc. 2008, 130, 6159−6169.
(15) For established or alleged enantioselective protonation of
transition-metal enolates, see: (a) References 14b−14e. (b) Bergens,
S. H.; Bosnich, B. J. Am. Chem. Soc. 1991, 113, 958−967.
(28) For development of P-Phos ligands and selected examples of
catalytic, asymmetric reactions that use CTH-xylyl-P-Phos, see: (a)
(a) Chan, A. S. C.; Pai, C. U.S. Patent 5,886,182, 1999. (b) Pai, C.;
Lin, C.; Lin, C.; Chen, C.; Chan, A. S. C.; Wong, W. T. J. Am. Chem.
Soc. 2000, 122, 11513−11514. (c) Wu, J.; Chen, X.; Guo, R.; Yeung,
C.; Chan, A. S. C. J. Org. Chem. 2003, 68, 2490−2493. (d) Grasa, G.
A.; Zanotti-Gerosa, A.; Medlock, J. A.; Hems, W. P. Org. Lett. 2005, 7,
1449−1451. (e) Wu, J.; Chan, A. S. C. Acc. Chem. Res. 2006, 39, 711−
I
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX