C.-Y. Chen et al. / Tetrahedron Letters 49 (2008) 6505–6507
6507
the –C„N group, and at 3371 cmꢀ1 for stretching of the –NH
group.
7. Davis, W. A.; Cava, M. P. J. Org. Chem. 1983, 48, 2774.
8. Kaupp, G.; Schmeyers, J.; Boy, J. Chem. Eur. J. 1998, 4, 2467–2474.
9. Paquette, L. A. In Encyclopedia of Reagents for Organic Synthesis; Wiley:
Chichester, UK, 1995.
10. Chow, S.; Wen, K.; Sanghvi, Y. S.; Theodorakis, E. A. Bioorg. Med. Chem. Lett.
2003, 13, 1631.
11. Bargiggia, F.; Piva, O. Tetrahedron: Asymmetry 2003, 14, 1819.
12. Pérard-Viret, J.; Prangé, T.; Tomas, A.; Royer, J. Tetrahedron 2002, 58,
5103.
13. Fieser, F.; Fieser, L. F. In Reagents for Organic Synthesis; John Wiley: New York,
1974; Vol. 4.
14. de Parrodi, C. A.; Clara-Sosa, A.; Pérez, L.; Quintero, L.; Marañón, V.; Toscano, R.
A.; Aviña, J. A.; Rojas-Lima, S.; Juaristi, E. Tetrahedron: Asymmetry 2001, 12,
69.
15. Hwu, J. R.; Wong, F. F.; Huang, J.-J.; Tsay, S.-C. J. Org. Chem. 1997, 62, 4097.
16. Hwu, J. R.; Hsu, C. H.; Wong, F. F.; Chung, C.-S.; Hakimelahi, G. H. Synthesis
1998, 329.
17. Hwu, J. R.; Wong, F. F. Eur. J. Org. Chem. 2006, 10, 2513.
18. Hwu, J. R.; Das, A. R.; Yang, C. W.; Huang, J.-J.; Hsu, M. H. Org. Lett. 2005, 7,
3211.
We proposed a plausible mechanism for the conversion of
isothiocyanate 1c to cyanamide 2c as shown in Scheme 2, which
accounted for our approach and design. NaN(SiMe3)2 underwent
nucleophilic attack toward isothiocyanate 1c to give adduct 5.34
The intramolecular 1,2-elimination would take place at Si–N–C–Sꢀ
moiety of 5 to give silyl-carbodiimide 6 and Me3SiSꢀ. This step is
similar to Krüger’s report in a deoxygenating step involving the
Si–N–C–Oꢀ moiety.35 Then, Me3SiSꢀ which is generated in situ dur-
ing the conversion of 1c?5, attacks the terminal silyl group in 6 to
afford cyanamide anion 7 and (Me3Si)2S. After aqueous workup,
cyanamide 2c was provided in light yellow solid in 85% yield. In a
control experiment for the conversion of 1c?2c, we were able to
identify N-(trimethylsilyliminomethylene)aniline 6 as a intermedi-
ate and hexamethyldisilthiane ((Me3Si)2S, bp 164 °C) as a by-prod-
uct by GC–mass spectroscopic technique.
In conclusion, sodium bis(trimethylsilyl)amide was first devel-
oped as a desulfurizing agent for the conversion of isothiocyanates
to cyanamides. The newly developed reaction proceeded in ‘one-
flask’ at room temperature. This reaction is easily manipulated
and could be applied in aliphatic isothiocyanates, aromatic isothio-
cyanates, diisothiocyanate, and benzoyl isothiocyanate to give the
corresponding cyanamides in good to excellent yields.
19. Colvin, E. W. Silicon in Organic Synthesis; Butterworth: London, 1981.
20. Hwu, J. R.; Tsay, S.-C. J. Org. Chem. 1990, 55, 5987.
21. Standard procedure for the formation of cyanamides:
A isothiocyanate
(1.0 mmol) and sodium bis(trimethylsilyl)amide (1.0 M in THF, 1.5 or
3.0 mmol) were added into a two-necked flask at room temperature under
nitrogen gas for 1.0–2.0 h. The reaction mixture was diluted with water at
room temperature, and extracted with EtOAc (2 ꢁ 10 mL). The combined
organic layers were washed with saturated aqueous NaCl (5 mL), dried over
MgSO4(s), filtered, and concentrated under reduced pressure. The residue was
purified by gravity column chromatograph packed with silica gel to provide the
desired cyanamide compound.
22. Ruppert, I. Tetrahedron Lett. 1977, 18, 1987.
23. Kim, J.-J.; Kweon, D.-H.; Cho, S.-D.; Kim, H.-K.; Jung, E.-Y.; Lee, S.-G.; Falckd, J.
R.; Yoona, Y.-J. Tetrahedron 2005, 61, 5889.
Supplementary data
24. Capps, H. H.; Dehn, W. M. J. Am. Chem. Soc. 1932, 54, 4301.
25. Bunnett, J. F.; Hrutfiord, B. F. J. Am. Chem. Soc. 1961, 83, 1691–1697.
26. Reddy, N. L.; Hu, L.-Y.; Cotter, R. E.; Fischer, J. B.; Wong, W. J.; McBurney, R. N.;
Weber, E.; Holmes, D. L.; Wong, S. T.; Prasad, R.; Keana, J. F. W. J. Med. Chem.
1994, 37, 260.
Supplementary data associated with this article can be found, in
27. Castro, J. L.; Ball, R. G.; Broughton, H. B.; Russell, M. G. N.; Rathbone, D.; Watt, A.
P.; Baker, R.; Chapman, K. L.; Fletcher, A. E.; Patel, S.; Smith, A. J.; Marshall, G.
R.; Ryecroft, W.; Matassa, V. G. J. Med. Chem. 1996, 39, 842.
References and notes
1. (a) Hu, L. Y.; Guo, J.; Magar, S. S.; Fischer, J. B.; Burke-Howie, K. J.; Durant, G. J. J.
Med. Chem. 1997, 40, 4281–4289; (b) Robinson, J. R.; Brown, W. H. Can. J. Chem.
1951, 29, 1069.
2. Stephens, R. W.; Domeier, L. A.; Todd, M. G.; Nelson, V. A. Tetrahedron Lett.
1992, 33, 733.
3. (a) Gilman, A. G.; Goodman, L. S.; Rall, T. W.; Murad, F. Goodman and Gilman’s
The Pharmacological Basis of Therapeutics, 7th ed; Pergamon Press: New York,
1990; (b) Saneyoshi, M.; Tokuzen, R.; Maeda, M.; Fukuoka, F. Chem. Pharm. Bull.
1968, 16, 505.
28. Kaupp, G.; Schmeyers, J.; Boy, J. Chem. Eur. J. 1998, 12, 2467.
29. Xian, M.; Fujiwara, N.; Wen, Z.; Cai, T.; Kazuma, S.; Janczuk, A. J.; Tang, X.;
Telyatmikov, V. V.; Zhang, Y.; Chen, X.; Miyamoto, Y.; Taniguchi, N.; Wang, P. G.
Bioorg. Med. Chem. 2002, 10, 3049.
30. Buchanan, G. W.; Crutchley, R. J. Magnetic Resonance in Chemistry 1994, 32, 552.
31. Renodon-Cornière, A.; Dijols, S.; Perollier, C.; Lefevre-Groboillot, D.; Boucher,
J.-L.; Attias, R.; Sari, M.-A.; Stuehr, D.; Mansuy, D. J. Med. Chem. 2002, 45, 944.
32. Gaponik, P. N.; Karavai, V. P.; Davshko, I. E.; Degtyarik, M. M.; Bogatikov, A. N.
Chem. Heterocycl. Compd. 1990, 26, 1274.
4. Wheland, R. C.; Martin, E. L. J. Org. Chem. 1975, 40, 3101.
5. Wu, Y.-q.; Limburg, D. C.; Wikinson, D. E.; Hamiton, G. S. Org. Lett. 2000, 2, 795.
6. (a) Van Leusen, A. M.; Jagt, J. C. Tetrahedron Lett. 1970, 12, 967; (b) Hughes, T. V.;
Hammond, S. D.; Cava, M. P. J. Org. Chem. 1998, 63, 401.
33. (a) Compounds are available from Aldrich Chemical Co.; (b) Tsuge, O.; Urano,
S.; Oe, K. J. Org. Chem. 1980, 45, 5130.
34. Wang, C.; Song, Q.; Xi, Z. Tetrahedron 2004, 60, 5207.
35. Krüger, C.; Rochow, E. G.; Wannagat, U. Chem. Ber. 1963, 96, 2132.