5
538
P. Theerthagiri, A. Lalitha / Tetrahedron Letters 53 (2012) 5535–5538
that the cyanation system soon attained equilibrium with alcohol,
symmetrical ether, and water via the benzylic carbocation. The ben-
zyliccationformedby theheterolyticcleavageoftheC–Obond ofthe
2. (a) Brogden, R. N.; Benfield, P. Drugs 1996, 51, 792–819; (b) Foot, E. A.; Leighton,
B. Diabetes 1994, 43, 73–79; (c) Holland, H. L.; Gu, J. X.; Orallo, F.; Camina, M.;
Fabeiro, P.; Willetts, A. J. Pharm. Res. 1999, 16, 281–287; (d) Prisant, L. M. Heart
Dis. 2001, 3, 55–62.
alcohols with the assistance of Lewis acidic Zn(OTf)
2
might have re-
3. Allegretti, M.; Bertini, R.; Cesta, M. C.; Bizzarri, C.; Di Bitondo, R.; Di Cioccio, V.;
Galliera, E.; Berdini, V.; Topai, A.; Zampella, G.; Russo, V.; Di Bello, N.; Nano, G.;
Nicolini, L.; Locati, M.; Fantucci, P.; Florio, S.; Colotta, F. J. Med. Chem. 2005, 48,
actedwiththenucleophile(cyanideanion)togivethecorresponding
product. The formation and stability of benzylic carbocations are
4
312–4331.
4. Huerta, C.; Varas-Lorenzo, C.; Castellsague, J.; Garcia Rodriguez, L. A. Heart
006, 92, 1610–1615.
1
,15
well documented.
Moreover, support for this mechanism could
as catalyst
2
be observed in the reaction of substrate a with Zn(OTf)
2
5.
(a) Bendale, P. M.; Khadilkar, B. M. Synth. Commun. 2000, 30, 1713–1718; (b)
Pascal, C.; Dubois, J.; Guenard, D.; Tchertanov, L.; Thoret, S.; Gueritte, F.
Tetrahedron 1998, 54, 14737–14756; (c) Prashad, M.; Seth, M.; Bhaduri, A. P. J.
Indian Chem. Soc. 1980, 57, 1115–1117; (d) Convery, M. A.; Davis, A. P.; Dunne,
C. J.; MacKinnon, J. W. Tetrahedron Lett. 1995, 36, 4279–4282.
in nitromethane at room temperature, where, dimerization giving
the symmetric ether b was observed. The formation of the ether
has been confirmed by its isolation in one of these experiments
and its characterization by NMR. In addition, reaction of isolated b
with trimethyl silylcyanide at 100 °C in the presence of a catalytic
amount of the zinc triflate under similar reaction conditions led to
the corresponding aryl nitrile in almost quantitative yield.
6.
Rosenmund, K. W.; Struck, E. Chem. Ber. 1919, 52, 1749–1756.
7. (a) Kuo, C. W.; Zhu, J. L.; Wu, J. D.; Chu, C. M.; Yao, C. F.; Shia, K. S. Chem.
Commun. 2007, 301–303; (b) Narsaiah, A. V.; Nagaiah, K. Adv. Synth. Catal. 2004,
3
46, 1271–1274; (c) Comprehensive Organic Transformations, Larock, R. C. Ed.;
New York, NY, 1989; p 976.
In summary, we have developed a very simple and highly effi-
cient methodology for the direct cyanation of benzylic alcohols with
TMSCN (trimethylsilyl cyanide) as cyanating agent catalyzed by
Zn(OTf) . Using the present procedure, a variety of a-aryl alcohols
2
can be converted into the corresponding nitriles within shorter reac-
8. Mermerian, A. H.; Fu, G. C. Angew. Chem., Int. Ed. 2005, 44, 949–952.
9. (a) Tschaen, D. M.; Desmond, R.; King, A. O.; Fortin, M. C.; Pipik, B.; King, S.;
Verhoevn, T. R. Synth. Commun. 1994, 26, 887–890; (b) Srivastava, R. R.; Zych, A.
J.; Jenkins, D. M.; Wang, H. J.; Chen, Z. J.; Fairfax, D. F. Synth. Commun. 2007, 37,
301–303.
10. Yan, M.; Xu, Q. Y.; Chen, A. S. C. Tetrahedron: Asymmetry 2000, 11, 845–849.
11. (a) Boigegrain, R.; Castro, B.; Selve, C. Tetrahedron Lett. 1975, 16, 2529–2530;
tion time in good to excellent yields under mild reaction condi-
(
b) Brett, D.; Downie, M. I.; Lee, J. B. J. Org. Chem. 1967, 32, 855–856; (c) Camps,
1
9
tions.
This method provides a clean, efficient, synthetically
F.; Gasol, V.; Guerrero, A. Synth. Commun. 1988, 18, 445–452; (d) Davis, R.;
Untech, K. J. J. Org. Chem. 1967, 32, 855–856.
competitive, and cheap alternative to the existing catalytic systems.
1
1
1
2. Chen, G.; Wang, Z.; Wu, J.; Ding, K. Org. Lett. 2008, 10, 4573–4576.
3. Rajagopal, G.; Kim, S. S. Tetrahedron 2009, 65, 4351–4355.
4. (a) Kobayashi, S. Chem. Lett. 1991, 2187–2189; (b) Kobayashi, S.; Hachiya, I. J.
Org. Chem. 1994, 59, 3590–3594; (c) Kobayashi, S.; Ogawa, C. Chem. Eur. J. 2006,
Acknowledgment
1
2, 5954–5958.
We would like to thank Dr. P. N. Arunachalam for his encour-
agement and support.
1
1
1
1
5. Noji, M.; Konno, Y.; Ishii, K. J. Org. Chem. 2007, 72, 5161–5167.
6. Faust, J. A.; Yee, L. S.; Sahyun, M. J. Org. Chem. 1961, 26, 4044–4047.
7. Sisido, K.; Nozaki, H.; Nozaki, M.; Okano, K. J. Org. Chem. 1954, 19, 1699–1703.
8. Tumanov, V. V.; Tishkov, A.; Mayr, H. Angew. Chem., Int. Ed. 2007, 46, 3563–
Supplementary data
3
566.
19. General procedure for the cyanation of secondary alcohols with TMSCN: A mixture
of alcohol (1 mmol), trimethylsilyl cyanide (1.2 mmol), and zinc triflate
(
15 mol %) was placed in a 50 ml sealed tube and heated to 100 °C for the
appropriate time mentioned in Table 3. After completion of the reaction
monitored by TLC), the reaction mixture was diluted with 30 ml of water and
(
References and notes
extracted with dichloromethane (2 Â 50 ml). The organic layer was separated
and washed with water, brine and dried over sodium sulfate, concentrated to
furnish the desired
were purified by column chromatography (silica gel; petroleum ether/ethyl
acetate 8:2).
a-aryl nitriles. When necessary, the obtained nitriles
1
. (a) Theerthagiri, P.; Lalitha, A.; Arunachalam, P. N. Tetrahedron Lett. 2010, 51,
2
5
813–2819; (b) Theerthagiri, P.; Lalitha, A. Tetrahedron Lett. 2010, 51, 5454–
458.