2
804
J.-A. Ma et al. / Tetrahedron: Asymmetry 12 (2001) 2801–2804
obtained was purified by silica gel column chromatog-
raphy to give 1a as a white solid (2.58 g, 95% yield).
after re-esterification with (−)-menthol, by GC analysis
with a capillary column (HP-1, 30 m×0.32 mm ID). For
entries 9–12 in Table 1, enantiomeric excesses were
determined by GC analysis using a capillary column
CP-SIL 24CB (30 m×0.25 mm ID).
2
0
Mp 197–198°C. [h] +235.4 (c 1.0, CH Cl ); IR (KBr):
D
2
2
2
8
977.0, 2926.0, 2820.3, 1588.8, 1432.5, 1148.0, 1053.0,
19.1, 750.5 cm . H NMR: l (ppm) 3.28 (d, J=12.2
−1 1
Hz, 2H), 3.68 (d, J=12.2 Hz, 2H), 3.74 (d, J=14.0 Hz,
H), 3.87 (d, J=14.0 Hz, 1H), 7.20–7.96 (m, 15H), 8.75
dd, J=5.2 and 1.8 Hz, 1H). MS (EI): 294(100),
95(38), 265(27), 252(11), 93(74), 92(16). Anal. calcd for
C H N : C, 87.01; H, 5.73; N, 7.26. Found: C, 87.15;
1
(
2
Acknowledgements
2
8
22
2
H, 5.74; N, 7.10%.
Financial support from the National Natural Science
Foundation of China, the Major Basic Research Devel-
opment Program (grant No. G2000077506) and The
Ministry of Education of China are gratefully
acknowledged.
4
.2.2. (S)-3,5-Dihydro-4-(8-quinolinylmethyl)dinaphth-
[
2,1-c:1%,2%-e]azepine 1b. White solid, 90% yield. Mp
2
0
9
3
8
8–99°C. [h]D +215.2 (c 1.0, CH Cl ). IR (KBr):
2 2
049.0, 2926.0, 2802.0, 1590.0, 1496.0, 1128.6, 1039.1,
−
1 1
19.5, 752.1 cm . H NMR: l (ppm) 3.34 (d, J=12.0
Hz, 2H), 3.76 (d, J=12.2 Hz, 2H), 4.20 (d, J=14.6 Hz,
1
2
1
5
H), 4.62 (d, J=14.6 Hz, 1H). MS (EI): 436(4),
95(40), 294(100), 277(19), 265(29), 252(10), 157(10),
43(75), 115(10). Anal. calcd for C H N : C, 88.04; H,
References
1. Nozaki, H.; Moriuti, S.; Takaya, H.; Noyori, R. Tetra-
hedron Lett. 1966, 5239.
. Aratani, T.; Yoneyoshi, Y.; Nagase, T. Tetrahedron Lett.
32
24
2
.54; N, 6.42. Found: C, 87.89; H, 5.56; N, 6.40%.
2
General procedure (route B): A mixture of (S)-3,5-dihy-
dro-4H-binaphth[2,1-c:1%,2%-e]-azepine 3 (401 mg, 1.36
mmol), 8-bromomethylquinoline (302 mg, 1.36 mmol)
and K CO (207 mg, 1.50 mmol) was dissolved in dry
acetonitrile (10 mL) and stirred at room temperature
for 18 h. The mixture was then diluted with
dichloromethane (20 mL), filtered and evaporated to
dryness under reduced pressure. The crude product
obtained was purified by silica gel column chromatog-
raphy to give 1b as a white solid (539 mg, 91%).
Similarly, ligand 1a was prepared in 97% yield.
1975, 1707.
3. Fritschi, H.; Leutenegger, U.; Pfaltz, A. Angew. Chem.,
Int. Ed. Engl. 1986, 25, 1005.
4. (a) Lowenthal, R. E.; Abiko, A.; Masamune, S. Tetra-
hedron Lett. 1990, 31, 6005; (b) M u¨ ller, D.; Umbricht, G.;
Weber, B.; Pfaltz, A. Helv. Chim. Acta 1991, 74, 232; (c)
Evens, D. A.; Woerpel, K. A.; Hinman, M. M.; Faul, M.
M. J. Am. Chem. Soc. 1991, 113, 726.
5. Ito, K.; Katsuki, T. Synlett 1993, 638.
6. Nakamura, A.; Konishi, A.; Tatsuno, Y.; Otsuka, S. J.
Am. Chem. Soc. 1978, 100, 3443.
. Suga, H.; Fudo, T.; Ibata, T. Synlett 1998, 933.
2
3
7
4
.3. General procedure for copper-catalyzed
8. (a) Kwong, H. L.; Lee, W. S. Tetrahedron: Asymmetry
2000, 11, 2299; (b) L o¨ tscher, D.; Rupprecht, S.; Stoeckli-
Evans, H.; von Zelewsky, A. Tetrahedron: Asymmetry
2000, 11, 4341.
cyclopropanation
To a two-neck round-bottomed flask were added
Cu(OTf)·(C H ) (5.0 mg, 0.02 mmol), chloroform (20
9. Kanemasa, S.; Hamura, S.; Harada, E.; Yamamoto, H.
6
6 0.5
mL) and ligand (0.04 mmol) under nitrogen. The solu-
tion was stirred at room temperature for 2 h and
filtered through a syringe-tip filter (0.45 mm). After
addition of the alkene (10 mmol), the solution was
heated to reflux, and diazoacetate (2 mmol) in chloro-
form (15 mL) was slowly added over 4 h at the reflux-
ing temperature. The resulting mixture was stirred
under reflux for an additional 2 h. The mixture was
then worked up by removing the solvent and the crude
product obtained was purified by silica gel column
chromatography (petroleum ether/EtOAc). All the
cyclopropanes obtained are known compounds and
Tetrahedron Lett. 1994, 35, 7985.
10. Xiao, D.; Zhang, Z.; Zhang, X. Org. Lett. 1999, 1, 1679.
11. Hawkins, J. M.; Lewis, T. A. J. Org. Chem. 1994, 59,
649.
12. (a) Doyle, M. P. Chem. Rev. 1986, 86, 919; (b)
Brookhart, M.; Studabaker, W. B. Chem. Rev. 1987, 87,
411; (c) Fritschi, H.; Leutenegger, U.; Pfaltz, A. Helv.
Chim. Acta 1988, 71, 1553; (d) Bedekar, A. V.; Koroleva,
E. B.; Andersson, P. G. J. Org. Chem. 1997, 62, 2518.
13. (a) Doyle, M. P.; McKervey, M. A.; Ye, T. Modern
Catalytic Methods for Organic Synthesis with Diazo Com-
pounds; John Wiley & Sons: New York, 1998; (b) Pfaltz,
A. Acc. Chem. Res. 1993, 26, 339.
1
were characterized by H NMR. Diastereoselectivities
(
cis:trans ratio) of cyclopropanation products were
14. (a) Wu, X.-Y.; Li, X.-H.; Zhou, Q.-L. Tetrahedron:
Asymmetry 1998, 9, 4143; (b) Wu, X.-Y.; Shen, Y.-Y.;
Ma, B.; Zhou, Q.-L.; Chan, A. S. C. J. Mol. Catal. A:
Chem. 2000, 157, 59.
measured by GC with a capillary column (HP-1, 30
m×0.32 mm ID). The enantiomeric excesses of cyclo-
propanes in entries 1–4 in Table 1 were determined,