Bioconjugate Chemistry
Article
(
22) Haag, R., and Kratz, F. (2006) Polymer Therapeutics: Concepts
and Applications. Angew. Chem., Int. Ed. 45, 1198−1215.
23) Zhao, Y.-J., Wei, W., Su, Z.-G., and Ma, G.-H. (2009) Poly
ethylene glycol) prodrug for anthracyclines via N-Mannich base linker:
Design, synthesis and biological evaluation. Int. J. Pharm. 379, 90−99.
24) Ferguson, E. L., Azzopardi, E., Roberts, J. L., Walsh, T. R., and
(40) Konieczny, S., Leurs, M., and Tiller, J. C. (2015) Polymer Enzyme
Conjugates as Chiral Ligands for Sharpless Dihydroxylation of Alkenes
in Organic Solvents. ChemBioChem 16, 83−90.
(
(
(41) Kerns, R. J., Rybak, M. J., Kaatz, G. W., Vaka, F., Cha, R., Grucz, R.
G., and Diwadkar, V. U. (2003) Structural features of piperazinyl-linked
ciprofloxacin dimers required for activity against drug-resistant strains of
Staphylococcus aureus. Bioorg. Med. Chem. Lett. 13, 2109−2112.
(42) Kerns, R. J., Rybak, M. J., Kaatz, G. W., Vaka, F., Cha, R., Grucz, R.
G., Diwadkar, V. U., and Ward, T. D. (2003) Piperazinyl-linked
fluoroquinolone dimers possessing potent antibacterial activity against
drug-resistant strains of Staphylococcus aureus. Bioorg. Med. Chem. Lett.
13, 1745−1749.
(43) Litt, M., Levy, A., and Herz, J. (1975) Polymerization of Cyclic
Imino Ethers. X. Kinetics, Chain Transfer, and Repolymerization. J.
Macromol. Sci., Chem. 9, 703−727.
(44) Chu, D. T., and Fernandes, P. B. (1989) Structure-activity
relationships of the fluoroquinolones. Antimicrob. Agents Chemother. 33,
(
Thomas, D. W. (2014) Dextrin−Colistin Conjugates as a Model
Bioresponsive Treatment for Multidrug Resistant Bacterial Infections.
Mol. Pharmaceutics 11, 4437−4447.
(
25) Du, J., Bandara, H. M. H. N., Du, P., Huang, H., Hoang, K.,
Nguyen, D., Mogarala, S. V., and Smyth, H. D. C. (2015) Improved
Biofilm Antimicrobial Activity of Polyethylene Glycol Conjugated
Tobramycin Compared to Tobramycin in Pseudomonas aeruginosa
Biofilms. Mol. Pharmaceutics 12, 1544−1553.
(
26) Lawson, M. C., Shoemaker, R., Hoth, K. B., Bowman, C. N., and
Anseth, K. S. (2009) Polymerizable Vancomycin Derivatives for
Bactericidal Biomaterial Surface Modification: Structure−Function
Evaluation. Biomacromolecules 10, 2221−2234.
1
(
31−135.
45) Tillotson, G. S. (1996) Quinolones: structure-activity relation-
ships and future predictions. J. Med. Microbiol. 44, 320−324.
46) LeBel, M. (1988) Ciprofloxacin: Chemistry, Mechanism of
(
27) Bieser, A. M., and Tiller, J. C. (2011) Mechanistic Considerations
on Contact-Active Antimicrobial Surfaces with Controlled Functional
Group Densities. Macromol. Biosci. 11, 526−534.
(
(
Action, Resistance, Antimicrobial Spectrum, Pharmacokinetics, Clinical
Trials, and Adverse Reactions. Pharmacotherapy: The Journal of Human
Pharmacology and Drug Therapy 8, 3−30.
28) Siedenbiedel, F., Fuchs, A., Moll, T., Weide, M., Breves, R., and
Tiller, J. C. (2013) Star-Shaped Poly(styrene)-block-Poly(4-vinyl-N-
methylpyridiniumiodide) for Semipermanent Antimicrobial Coatings.
Macromol. Biosci. 13, 1447−1455.
(
47) Fortuniak, W., Mizerska, U., Chojnowski, J., Basinska, T.,
Slomkowski, S., Chehimi, M., Konopacka, A., Turecka, K., and Werel, W.
2011) Polysiloxanes With Quaternary Ammonium Salt Biocidal
(
29) Turos, E., Shim, J.-Y., Wang, Y., Greenhalgh, K., Reddy, G. S. K.,
(
Dickey, S., and Lim, D. V. (2007) Antibiotic-conjugated polyacrylate
nanoparticles: New opportunities for development of anti-MRSA
agents. Bioorg. Med. Chem. Lett. 17, 53−56.
Functions and Their Behavior When Incorporated Into a Silicone
Elastomer Network. J. Inorg. Organomet. Polym. Mater. 21, 576−589.
(48) Fik, C. P., Konieczny, S., Pashley, D. H., Waschinski, C. J., Ladisch,
(
30) Sarker, P., Shepherd, J., Swindells, K., Douglas, I., MacNeil, S.,
R. S., Salz, U., Bock, T., and Tiller, J. C. (2014) Telechelic Poly(2-
oxazoline)s with a Biocidal and a Polymerizable Terminal as
Collagenase Inhibiting Additive for Long-Term Active Antimicrobial
Dental Materials. Macromol. Biosci. 14, 1569−1579.
Swanson, L., and Rimmer, S. (2011) Highly Branched Polymers with
Polymyxin End Groups Responsive to Pseudomonas aeruginosa.
Biomacromolecules 12, 1−5.
(
31) Tauhardt, L., Frant, M., Pretzel, D., Hartlieb, M., Bucher, C.,
Hildebrand, G., Schroter, B., Weber, C., Kempe, K., Gottschaldt, M.,
et al. (2014) Amine end-functionalized poly(2-ethyl-2-oxazoline) as
promising coating material for antifouling applications. J. Mater. Chem. B
2
(
, 4883−4893.
32) Weber, C., Becer, C. R., Baumgaertel, A., Hoogenboom, R., and
Schubert, U. S. (2009) Preparation of Methacrylate End-Functionalized
Poly(2-ethyl-2-oxazoline) Macromonomers. Des. Monomers Polym. 12,
1
(
49−165.
33) Krumm, C., Konieczny, S., Dropalla, G. J., Milbradt, M., and
Tiller, J. C. (2013) Amphiphilic Polymer Conetworks Based on End
Group Cross-Linked Poly(2-oxazoline) Homo- and Triblock Copoly-
mers. Macromolecules 46, 3234−3245.
(
34) Farrugia, B. L., Kempe, K., Schubert, U. S., Hoogenboom, R., and
Dargaville, T. R. (2013) Poly(2-oxazoline) Hydrogels for Controlled
Fibroblast Attachment. Biomacromolecules 14, 2724−2732.
(
35) Adams, N., and Schubert, U. S. (2007) Poly(2-oxazolines) in
biological and biomedical application contexts. Adv. Drug Delivery Rev.
9, 1504−1520.
36) Waschinski, C. J., Herdes, V., Schueler, F., and Tiller, J. C. (2005)
5
(
Influence of Satellite Groups on Telechelic Antimicrobial Functions of
Polyoxazolines. Macromol. Biosci. 5, 149−156.
(
37) Fik, C. P., Krumm, C., Muennig, C., Baur, T. I., Salz, U., Bock, T.,
and Tiller, J. C. (2012) Impact of Functional Satellite Groups on the
Antimicrobial Activity and Hemocompatibility of Telechelic Poly(2-
methyloxazoline)s. Biomacromolecules 13, 165−172.
(
38) Waschinski, C. J., Barnert, S., Theobald, A., Schubert, R.,
hter, K., and Tiller, J. C. (2008)
Kleinschmidt, F., Hoffmann, A., Saalwac
Insights in the Antibacterial Action of Poly(methyloxazoline)s with a
̈
Biocidal End Group and Varying Satellite Groups. Biomacromolecules 9,
1
(
764−1771.
39) Krumm, C., Harmuth, S., Hijazi, M., Neugebauer, B., Kampmann,
A.-L., Geltenpoth, H., Sickmann, A., and Tiller, J. C. (2014)
Antimicrobial Poly(2-methyloxazoline)s with Bioswitchable Activity
through Satellite Group Modification. Angew. Chem., Int. Ed. 53, 3830−
3
834.
M
Bioconjugate Chem. XXXX, XXX, XXX−XXX