Journal of the American Chemical Society
Page 8 of 10
Autoinduction, Inhibition, and Autoinhibition in a Rh-Catalyzed
Radical Dichlorination of Alkenes with Nucleophilic Chlorine
Sources. J. Am. Chem. Soc. 2017, 139, 15548-15553.
C–C Cleavage: Mechanism of Decyanative Aryl Silylation. ACS
Catal. 2018, 8, 8932-8940; (c) Ozkal, E.; Cacherat, B.; Morandi,
B., Cobalt(III)-Catalyzed Functionalization of Unstrained
Carbon–Carbon Bonds through β-Carbon Cleavage of Alcohols.
ACS Catal. 2015, 5, 6458-6462; (d) Souillart, L.; Parker, E.;
Cramer, N., Highly Enantioselective Rhodium(I)-Catalyzed
Activation of Enantiotopic Cyclobutanone C–C Bonds. Angew.
Chem. Int. Ed. 2014, 53, 3001-3005; (e) Souillart, L.; Cramer, N.,
Highly Enantioselective Rhodium(I)-Catalyzed Carbonyl
Carboacylations Initiated by C–C Bond Activation. Angew. Chem.
Int. Ed. 2014, 53, 9640-9644; (f) Wang, J.; Chen, W.; Zuo, S.; Liu,
L.; Zhang, X.; Wang, J., Direct Exchange of a Ketone Methyl or
Aryl Group to Another Aryl Group through C–C Bond Activation
Assisted by Rhodium Chelation. Angew. Chem. Int. Ed. 2012, 51,
12334-12338 (g) Gooßen, L. J.; Deng, G.; Levy, L. M., Synthesis of
Biaryls via Catalytic Decarboxylative Coupling. Science 2006, 313,
662-664; (h) Okazawa, T.; Satoh, T.; Miura, M.; Nomura, M.,
Palladium-Catalyzed Multiple Arylation of Thiophenes. J. Am.
Chem. Soc. 2002, 124, 5286-5287, and cited references.
(8) (a) Yan, M.; Kawamata, Y.; Baran, P. S., Synthetic Organic
Electrochemistry: Calling All Engineers. Angew. Chem. Int. Ed.
2018, 57, 4149-4155; (b) Wiebe, A.; Gieshoff, T.; Mohle, S.;
Rodrigo, E.; Zirbes, M.; Waldvogel, S. R., Electrifying Organic
Synthesis. Angew. Chem. Int. Ed., 2018, 57, 5594-5619; (c)
Waldvogel, S. R.; Lips, S.; Selt, M.; Riehl, B.; Kampf, C. J.,
Electrochemical Arylation Reaction. Chem. Rev. 2018, 118, 6706-
6765; (d) Tang, S.; Liu, Y.; Lei, A., Electrochemical Oxidative
1
2
3
4
5
6
7
8
(10) (a) Wang, F.; Rafiee, M.; Stahl, S. S., Electrochemical
Functional-Group-Tolerant Shono-type Oxidation of Cyclic
Carbamates Enabled by Aminoxyl Mediators. Angew. Chem. Int.
Ed. 2018, 57, 6686-6690; (b) Kawamata, Y.; Yan, M.; Liu, Z.; Bao,
D. H.; Chen, J.; Starr, J. T.; Baran, P. S., Scalable, Electrochemical
Oxidation of Unactivated C–H Bonds. J. Am. Chem. Soc. 2017,
139, 7448-7451; (c) Horn, E. J.; Rosen, B. R.; Chen, Y.; Tang, J.;
Chen, K.; Eastgate, M. D.; Baran, P. S., Scalable and Sustainable
Electrochemical Allylic C–H Oxidation. Nature 2016, 533, 77-81.
(11) (a) Liu, K.; Song, C.; Lei, A., Recent Advances in Iodine
Mediated Electrochemical Oxidative Cross-Coupling. Org.
Biomol. Chem. 2018, 16, 2375-2387; (b) Lips, S.; Schollmeyer, D.;
Franke, R.; Waldvogel, S. R., Regioselective Metal- and Reagent-
Free Arylation of Benzothiophenes by Dehydrogenative
Electrosynthesis. Angew. Chem. Int. Ed. 2018, 40, 13325-13329; (c)
Imada, Y.; Rockl, J. L.; Wiebe, A.; Gieshoff, T.; Schollmeyer, D.;
Chiba, K.; Franke, R.; Waldvogel, S. R., Metal- and Reagent-Free
Dehydrogenative Formal Benzyl-Aryl Cross-Coupling by Anodic
Activation in 1,1,1,3,3,3-Hexafluoropropan-2-ol. Angew. Chem. Int.
Ed. 2018, 57, 12136-12140; (d) Wiebe, A.; Lips, S.; Schollmeyer, D.;
Franke, R.; Waldvogel, S. R., Single and Twofold Metal- and
Reagent-Free Anodic C–C Cross-Coupling of Phenols with
Thiophenes. Angew. Chem. Int. Ed. 2017, 56, 14727-14731; (e)
Schulz, L.; Enders, M.; Elsler, B.; Schollmeyer, D.; Dyballa, K. M.;
Franke, R.; Waldvogel, S. R., Reagent- and Metal-Free Anodic C–
C Cross-Coupling of Aniline Derivatives. Angew. Chem. Int. Ed.
2017, 56, 4877-4881; (f) Li, C. K., Y.; Nakamura, H.; Vantourout, J.
C.; Liu, Z.; Hou, Q.; Bao, D.; Starr, J. T.; Chen, J.; Yan, M.; Baran,
P. S., Electrochemically Enabled, Nickel-Catalyzed Amination.
Angew. Chem. Int. Ed. 2017, 56, 13088-13093; (g) Gieshoff, T.;
Kehl, A.; Schollmeyer, D.; Moeller, K. D.; Waldvogel, S. R.,
Insights into the Mechanism of Anodic N–N Bond Formation by
Dehydrogenative Coupling. J. Am. Chem. Soc. 2017, 139, 12317-
12324. For reductive couplings, see: (h) Gomes, P.; Gosmini, C.;
Nédélec, J.-Y.; Périchon, J., Electrochemical Vinylation of Aryl
and Vinyl Halides with Acrylate Esters Catalyzed by Cobalt
Bromide. Tetrahedron Lett. 2002, 43, 5901-5903; (i) Gomes, P.;
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Cross-coupling with Hydrogen Evolution:
A Green and
Sustainable Way for Bond Formation. Chem 2018, 4, 27-45; (e)
Mohle, S.; Zirbes, M.; Rodrigo, E.; Gieshoff, T.; Wiebe, A.;
Waldvogel, S. R., Modern Electrochemical Aspects for the
Synthesis of Value-Added Organic Products. Angew. Chem. Int.
Ed. 2018, 57, 6018-6041; (f) Lin, S.; Parry, J.; Fu, N.,
Electrocatalytic Difunctionalization of Olefins as a General
Approach to the Synthesis of Vicinal Diamines. Synlett 2018, 29,
257-265; (g) Yan, M.; Kawamata, Y.; Baran, P. S., Synthetic
Organic Electrochemical Methods Since 2000: On the Verge of a
Renaissance. Chem. Rev. 2017, 117, 13230-13319; (h) Hou, Z.-W.;
Mao, Z.-Y.; Xu, H.-C., Recent Progress on the Synthesis of
(Aza)indoles through Oxidative Alkyne Annulation Reactions.
Synlett 2017, 28, 1867-1872; (i) Feng, R.; Smith, J. A.; Moeller, K.
D., Anodic Cyclization Reactions and the Mechanistic Strategies
That Enable Optimization. Acc. Chem. Res. 2017, 50, 2346-2352;
(j) Horn, E. J.; Rosen, B. R.; Baran, P. S., Synthetic Organic
Electrochemistry: An Enabling and Innately Sustainable Method.
ACS Cent. Sci. 2016, 2, 302-308; (k) Yoshida, J.; Kataoka, K.;
Horcajada, R.; Nagaki, A., Modern Strategies in Electroorganic
Synthesis. Chem. Rev. 2008, 108, 2265-2299; (l) Jutand, A.,
Contribution of Electrochemistry to Organometallic Catalysis.
Chem. Rev. 2008, 108, 2300-2347.
(9) (a) Ye, K. Y.; Song, Z.; Sauer, G. S.; Harenberg, J. H.; Fu, N.;
Lin, S., Synthesis of Chlorotrifluoromethylated Pyrrolidines by
Electrocatalytic Radical Ene-Yne Cyclization. Chem. Eur. J. 2018,
24, 12274-12279; (b) Ye, K. Y.; Pombar, G.; Fu, N.; Sauer, G. S.;
Keresztes, I.; Lin, S., Anodically Coupled Electrolysis for the
Heterodifunctionalization of Alkenes. J. Am. Chem. Soc. 2018,
140, 2438-2441; (c) Sauer, G. S.; Lin, S., An Electrocatalytic
Approach to the Radical Difunctionalization of Alkenes. ACS
Catal. 2018, 8, 5175-5187; (d) Cai, C.-Y.; Xu, H.-C.,
Dehydrogenative Reagent-free Annulation of Alkenes with Diols
for the Synthesis of Saturated O-Heterocycles. Nat. Commun.
2018, 9, 3551; (e) Fu, N. S., G. S.; Saha, A.; Loo, A.; Lin, S., Metal-
Catalyzed Electrochemical Diazidation of Alkenes. Science 2017,
357, 575-579; (f) Fu, N.; Sauer, G. S.; Lin, S., Electrocatalytic
Gosmini,
C.;
Périchon,
J.,
Cobalt-Catalyzed
Direct
Electrochemical Cross-Coupling between Aryl or Heteroaryl
Halides and Allylic Acetates or Carbonates. J. Org. Chem. 2003,
68, 1142-1145, and cited references.
(12) Peterson, B. M.; Lin, S.; Fors, B. P., Electrochemically
Controlled Cationic Polymerization of Vinyl Ethers. J. Am. Chem.
Soc. 2018, 140, 2076-2079.
(13) (a) Yang, Q.-L.; Fang, P.; Mei, T.-S., Recent Advances in
Organic Electrochemical C–H Functionalization. Chin. J. Chem.
2018, 36, 338-352; (b) Sauermann, N.; Meyer, T. H.; Qiu, Y.;
Ackermann, L., Electrocatalytic C–H Activation. ACS Catal. 2018,
8, 7086-7103; (c) Sauermann, N.; Meyer, T. H.; Ackermann, L.,
Electrochemical Cobalt-Catalyzed C–H Activation. Chem. Eur. J.
2018, 24, 16209-16217; (d) Ma, C.; Fang, P.; Mei, T.-S., Recent
Advances in C–H Functionalization Using Electrochemical
Transition Metal Catalysis. ACS Catal. 2018, 8, 7179-7189; (e)
Karkas, M. D., Electrochemical Strategies for C–H
Functionalization and C–N Bond Formation. Chem. Soc. Rev.
2018, 47, 5786-5865; (f) Jiao, K.-J.; Zhao, C.-Q.; Fang, P.; Mei, T.-
S., Palladium Catalyzed C–H Functionalization with
Electrochemical Oxidation. Tetrahedron Lett. 2017, 58, 797-802.
(14) (a) Shrestha, A.; Lee, M.; Dunn, A. L.; Sanford, M. S.,
Palladium-Catalyzed
C–H
Bond
Acetoxylation
via
Electrochemical Oxidation. Org. Lett. 2018, 20, 204-207; (b)
Yang, Q. L.; Li, Y. Q.; Ma, C.; Fang, P.; Zhang, X. J.; Mei, T.-S.,
Palladium-Catalyzed C(sp3)–H Oxygenation via Electrochemical
Oxidation. J. Am. Chem. Soc. 2017, 139, 3293-3298; (c) Ma, C.;
ACS Paragon Plus Environment