M. L. N. Rao et al. / Tetrahedron Letters 50 (2009) 4268–4271
4271
Lett. 2002, 4, 2557–2559; (i) Sajiki, H.; Aoki, F.; Esaki, H.; Maegawa, T.; Hirota,
K. Org. Lett. 2004, 6, 1485–1487; (j) Mandal, P. K.; McMurray, J. S. J. Org. Chem.
2007, 72, 6599–6601.
excellent, furnishing high yields of ketones with triarylbismuths
(compounds 26–31). The coupling reactions with 4-bromo and
4-chloro benzoyl chlorides were found to be efficient with che-
mo-selective coupling furnishing the corresponding halo-benz-
ophenones in high yields (compounds 32–37). The couplings of
furan-2-carbonyl chloride and thiophene-2-carbonyl chloride were
efficient with triarylbismuths and produced mixed ketones in good
yields (compounds 38–43).
As described above, the Pd(0)/C-catalyzed coupling of a variety
of acyl chlorides with triarylbismuths provided novel atom-effi-
cient synthesis of functionalized symmetrical/unsymmetrical aro-
matic and hetero-aromatic ketones. This method also proved to
be facile for chemo-selective synthesis of functionalized bromo-
and chloro benzophenones. The regio-selective synthesis of certain
isomeric ketones (Tables 2 and 3) through cross-coupling demon-
strated the ease associated with this method when compared to
Friedel–Crafts acylation reaction. In addition, the facile reactivity
of various aroyl chlorides as atom-efficient acyl donors is superior
to anhydrides for such couplings. The coupling reactions involving
anhydride as acyl donor produce invariably an equivalent amount
of corresponding acid as a by-product.15
5. (a) Subramanian, V.; Batchu, V. R.; Barange, D.; Pal, M. J. Org. Chem. 2005, 70,
4778–4783; (b) Felpin, F.-X. J. Org. Chem. 2005, 70, 8575–8578; (c) Kabalka, G.
W.; Namboodiri, V.; Wang, L. Chem. Commun. 2001, 775; (d) Tagata, T.; Nishida,
M. J. Org. Chem. 2003, 68, 9412–9415.
6. (a) Felpin, F.-X.; Landais, Y. J. Org. Chem. 2005, 70, 6441–6446; (b) Shimizu, T.;
Seki, M. Tetrahedron Lett. 2001, 42, 429–432; (c) Lai, C. W.; Kwong, F. Y.; Wang,
Y.; Chan, K. S. Tetrahedron Lett. 2001, 42, 4883–4885.
7. (a) Hwang, J. P.; Prakash, G. K. S.; Olah, G. A. Tetrahedron 2000, 56, 7199–7203;
(b) Nara, S. J.; Harjani, J. R.; Salunkhe, M. M. J. Org. Chem. 2001, 66, 8616–8620;
(c) Ross, J.; Xiao, J. Green Chem. 2002, 4, 129–133; (d) Furstner, A.; Voigtlander,
D.; Schrader, W.; Giebel, D.; Reetz, M. T. Org. Lett. 2001, 3, 417–420; (e) Larock,
R. C. Comprehensive Organic Transformations; Wiley-VCH: New York, 1989; (f)
Chiche, B.; Finiels, A.; Gauthier, C.; Geneste, P.; Graille, J.; Pioch, D. J. Org. Chem.
1986, 51, 2128–2130.
8. (a) Bandgar, B. P.; Patil, A. V. Tetrahedron Lett. 2005, 46, 7627–7630; (b) Xin, B.;
Zhang, Y.; Cheng, K. J. Org. Chem. 2006, 71, 5725–5731; (c) Bumagin, N. A.;
Korolev, D. N. Tetrahedron Lett. 1999, 40, 3057–3060; (d) Urawa, Y.; Ogura, K.
Tetrahedron Lett. 2003, 44, 271–273; (e) Haddach, M.; McCarthy, J. R.
Tetrahedron Lett. 1999, 40, 3109–3112; (f) Kabalka, G. W.; Malladi, R. R.;
Tejedor, D.; Kelley, S. Tetrahedron Lett. 2000, 41, 999–1001; (g) Polackova, V.;
Toma, S.; Augustinova, I. Tetrahedron 2006, 62, 11675–11678.
9. (a) Dieter, R. K. Tetrahedron 1999, 55, 4177–4236; (b) Wang, X.-J.; Zhang, L.;
Sun, X.; Xu, Y.; Krishnamurthy, D.; Senanayake, C. H. Org. Lett. 2005, 7, 5593–
5595; (c) Milstein, D.; Stille, J. K. J. Am. Chem. Soc. 1978, 100, 3636–3638; (d)
Lerebours, R.; Camacho-Soto, A.; Wolf, C. J. Org. Chem. 2005, 70, 8601–8604; (e)
Silbestri, G. F.; Masson, R. B.; Lockhart, M. T.; Chopa, A. B. J. Organomet. Chem.
2006, 691, 1520–1524; (f) Grey, R. A. J. Org. Chem. 1984, 49, 2288–2289.
10. (a) Rao, M. L. N.; Venkatesh, V.; Banerjee, D. Synfacts 2008, 4, 406; (b) Rao, M. L.
N.; Jadhav, D. N.; Banerjee, D. Tetrahedron 2008, 64, 5762–5772; (c) Rao, M. L.
N.; Venkatesh, V.; Jadhav, D. N. J. Organomet. Chem. 2008, 693, 2494–2498; (d)
Rao, M. L. N.; Venkatesh, V.; Banerjee, D. Tetrahedron 2007, 63, 12917–12926;
(e) Rao, M. L. N.; Banerjee, D.; Jadhav, D. N. Tetrahedron Lett. 2007, 48, 6644–
6647; (f) Rao, M. L. N.; Banerjee, D.; Jadhav, D. N. Tetrahedron Lett. 2007, 48,
2707–2711; (g) Rao, M. L. N.; Venkatesh, V.; Jadhav, D. N. Tetrahedron Lett.
2006, 47, 6975–6978.
Thus, we have disclosed Pd(0)/C-catalyzed coupling reaction of
acyl chlorides with triarylbismuths as atom-efficient, sub-stoichi-
ometric, and multi-coupling reagents for the synthesis of aromatic
and hetero-aromatic ketones. The coupling reactions involving tri-
arylbismuths proved to be very efficient and notably involves con-
version of three Bi–C bonds to three C–C bonds in one-pot
operation under Pd(0)/C catalysis.
Acknowledgments
11. (a)Organobismuth Chemistry; Suzuki, H., Matano, Y., Eds.; Elsevier, 2001; (b)
Rao, M. L. N.; Yamazaki, O.; Shimada, S.; Tanaka, T.; Suzuki, Y.; Tanaka, M. Org.
Lett. 2001, 3, 4103–4105.
12. Aromatic acyl chlorides were prepared using the literature procedures: (a)
Chaudhari, S. S.; Akamanchi, K. G. Synlett 1999, 1763–1765; (b) Bessard, Y.;
Crettaz, R. Heterocycles 1999, 51, 2589–2602.
The authors thank the Department of Science and Technology
(DST), New Delhi for financial support of this work. In addition,
D.N.J. thanks CSIR, New Dehi and V.V. thanks UGC, New Delhi for
research fellowships.
13. Representative coupling procedure: An oven-dried Schlenk tube was charged
with PhCOCl (0.825 mmol, 0.116 g), BiPh3 (0.25 mmol, 0.11 g), 10% Pd(0)/C
(0.0075 mmol of Pd, 0.024 g), PPh3 (0.03 mmol, 0.0078 g), and Et3N
(0.25 mmol, 0.025 g) followed by anhydrous THF (3 mL) under nitrogen
atmosphere. The reaction mixture in Schlenk tube was stirred in an oil bath
at 80 °C for 3 h. In the end, the reaction mixture was cooled to room
temperature, quenched with water, and extracted with ethyl acetate
(2Â15 mL). The combined ethyl acetate extract was washed with dilute
hydrochloric acid (5 mL), saturated sodium bicarbonate solution (5 mL), brine
(2Â5 mL), and dried over anhydrous magnesium sulfate and was concentrated
under vacuo to obtain the crude product. The crude product was further
purified on silica gel by column chromatography to afford benzophenone (1)
(0.123 g) in 90% yield based on the amount of based on acyl chlorides used.
14. In all the reactions, 1 equiv of BiPh3 was used with 3.3 equiv of acyl chloride.
15. (a) Gooben, L. J.; Ghosh, K. Angew. Chem., Int. Ed. 2001, 40, 3458–3460; (b)
Kakino, R.; Yasumi, S.; Shimizu, I.; Yamamoto, A. Bull. Chem. Soc. Jpn. 2002, 75,
137–148; (c) Wang, D.; Zhang, Z. Org. Lett. 2003, 5, 4645–4648; (d) Kakino, R.;
Narahashi, H.; Shimizu, I.; Yamamoto, A. Bull. Chem. Soc. Jpn. 2002, 75, 1333–
1345.
References and notes
1. Nicolaou, K. C.; Bulger, P. G.; Sarlah, D. Angew. Chem., Int. Ed. 2005, 44, 4442–
4489.
2. (a) Corbet, J.-P.; Mignani, G. Chem. Rev. 2006, 106, 2651–2710; (b) Hassan, J.;
Sevignon, M.; Gozzi, C.; Schulz, E.; Lemaire, M. Chem. Rev. 2002, 102, 1359–
1469.
3. Pd/C microreview: Felpin, F.-X.; Ayad, T.; Mitra, S. Eur. J. Org. Chem. 2006, 2679–
2690.
4. (a) Heidenreich, R. G.; Kohler, K.; Krauter, J. G. E.; Pietsch, J. Synlett 2002, 1118–
1122; (b) Marck, G.; Villiger, A.; Buchecker, R. Tetrahedron Lett. 1994, 35, 3277–
3280; (c) Taylor, R. H.; Felpin, F.-X. Org. Lett. 2007, 9, 2911–2914; (d) Sakurai,
H.; Tsukuda, T.; Hirao, T. J. Org. Chem. 2002, 67, 2721–2722; (e) Hallberg, A.;
Westfelt, L. J. Chem. Soc., Perkin Trans. 1 1984, 933–935; (f) Novak, Z.; Szabo, A.;
Repasi, J.; Kotschy, A. J. Org. Chem. 2003, 68, 3327–3329; (g) Caspi, D. D.; Garg,
N. K.; Stoltz, B. M. Org. Lett. 2005, 7, 2513–2516; (h) Cossy, J.; Belotti, D. Org.