Journal of the American Chemical Society
Page 4 of 5
O
O
Author Contributions
O
O
O
S
X
O
1
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
Catalyst
‡
S
These authors contributed equally.
NH
1
1
2: X = N3
4: X = NH2
13
Notes
J.F.H., H.M.K., P.F.D., and D.S.C. are inventors on PCT Applica-
tion No. PCT/US2016/057032, filed October 14, 2016, by the
Lawrence Berkeley National Laboratory, that covers preparation
and application of the artificial metalloenzymes containing iridi-
um-porphyrins in this paper.
201
220
Fe-P411-CIS-T438S:
No Reaction
12
Ir(Me)-CYP119
C317G, T213G, V254L
90: 10 er, 84% yield,
255 TON,
25 : 1 (13 : 14)
1
2
Ir(Me)-CYP119
C317G, T213G, L69V
95: 5 er, 10% yield,
30 TON
5 : 1 (13 : 14)
ACKNOWLEDGMENT
2
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
14
[Rh {(S)-nttl} ]:
66: 34 er, 38% yield,
1 TON20
The authors gratefully acknowledge Cynthia Mantassas for her
work on related studies that informed aspects of this publication.
This work was supported by the Director, Office of Science, of
the US Department of Energy under contract no. DE-AC02-
2
4
1
Figure 5. C-H amination of aryloxysulfonyl azides 12 to form
aryl sulfamate 13 in the presence of Ir(Me)- and Fe-enzymes and
a Rh-catalyst. The conditions with Ir(Me)CYP119 mutants are the
same as those in Fig 4. The conditions with Fe-P411-CIS mutant:
0.2% Fe-P411-CIS-T438S, 2 mM substrate, 2 mM Na S O , 1 mL
2 2 4
solvent (100 mM KPi, pH 8.0 containing 2.5 vol% DMSO). The
results for the [Rh] catalyzed reaction are those in ref 20.
0
5CH11231, by the NSF (graduate research fellowship to
H.M.K.), the NWO Netherlands Organization for Scientific Re-
search (Rubicon postdoctoral fellowship no. 680-50-1306 to
P.D.), and the Naito Foundation (postdoctoral fellowship to H.H.).
We thank the QB3 MacroLab facility at UC Berkeley (competent
cells) and the UC Berkeley DNA Sequencing Facility (plasmid
sequencing).
In summary, we have shown that Ir(Me)-PIX CYP119
enzymes catalyze C-H amination reactions with high
chemoselectivity for insertion of nitrenes over reduction to
the sulfonamide. Although Ir-containing porphyrins have
not been reported to catalyze C-H amination reactions,
Ir(Me)-PIX enzymes furnish sultams from sulfonyl azides
in high yields, high enantioselectivity and good turnover
numbers, while giving only traces of the sulfonamide by-
products typically observed in substantial amounts from the
reactions catalyzed by Fe-PIX enzymes. Variants display-
ing these favorable selectivities were identified rapidly by
screening mutants in cell lysates, instead of screening iso-
lated purified enzymes. Moreover, Ir(Me)-PIX CYP119
enzymes catalyze chemoselective C-H insertion reactions
of aryloxysulfonyl azides that do not form any C-H amina-
tion products in the presence of natural enzymes and form
the product with low yield and enantioselectivity with rho-
dium catalysts. Together, these results exemplify the merits
of incorporating unnatural metals into PIX enzymes in
order to achieve reaction outcomes previously not achieved
using natural enzymes.
REFERENCES
(1) The Ubiquitous Roles of Cytochrome P450 Proteins; Sigel, A.,
Sigel, H., Sigel, R. K. O., Eds.; John Wiley & Sons, Ltd: Chichester, UK,
2
007.
2) Whitehouse, C. J. C.; Bell, S. G.; Wong, L.-L. Chem. Soc. Rev.
(
2012, 41, 1218.
(3) Barry, S. M.; Kers, J. A.; Johnson, E. G.; Song, L.; Aston, P. R.;
Patel, B.; Krasnoff, S. B.; Crane, B. R.; Gibson, D. M.; Loria, R.; Challis,
G. L. Nat. Chem. Biol. 2012, 8, 814.
(
4) Hyster, T. K.; Ward, T. R. Angew. Chem. Int. Ed. 2016, 55, 7344.
(5) Hyster, T. K.; Arnold, F. H. Isr. J. Chem. 2015, 55, 14.
(6) Lewis, J. C. ACS Catal. 2013, 3, 2954.
(
7) Singh, R.; Kolev, J. N.; Sutera, P. A.; Fasan, R. ACS Catal. 2015,
, 1685.
8) McIntosh, J. A.; Coelho, P. S.; Farwell, C. C.; Wang, Z. J.; Lewis,
J. C.; Brown, T. R.; Arnold, F. H. Angew. Chem. Int. Ed. 2013, 52, 9309.
9) Hyster, T. K.; Farwell, C. C.; Buller, A. R.; McIntosh, J. A.; Ar-
nold, F. H. J. Am. Chem. Soc. 2014, 136, 15505.
10) Bordeaux, M.; Singh, R.; Fasan, R. Bioorg. Med. Chem. 2014, 22,
697.
(11) Key, H. M.; Dydio, P.; Clark, D. S.; Hartwig, J. F. Nature 2016,
34, 534.
12) Dydio, P.; Key, H. M.; Nazarenko, A.; Rha, J. Y.-E.;
5
(
(
(
5
5
(
Seyedkazemi, V.; Clark, D. S.; Hartwig, J. F. Science 2016, 354, 102.
(13) Uchida, T.; Katsuki, T. Chem Rec 2014, 14 (1), 117.
(14) Lu, H.; Zhang, X. P. Chem. Soc. Rev. 2011, 40, 1899.
ASSOCIATED CONTENT
Supporting Information
(
15) Chan, K. H.; Guan, X.; Lo, V. K. Y.; Che, C.-M. Angew. Chem.
Int. Ed. 2014, 53, 2982.
16) Rabe, K. S.; Kiko, K.; Niemeyer, C. M. ChemBioChem 2008, 9,
420.
(
Experimental procedures, additional figures, tabulated experi-
mental data, and complete characterization of new compounds
reported in this publication. This material is available free of
charge via the Internet at http://pubs.acs.org.
(
17) Ichinose, M.; Suematsu, H.; Yasutomi, Y.; Nishioka, Y.; Uchida,
T.; Katsuki, T. Angew. Chem. Int. Ed. 2011, 50, 9884.
(
(
18) Wehn, P. M.; Du Bois, J. Org. Lett. 2005, 7, 4685.
19) Luo, Y.; Carnell, A. J.; Lam, H. W. Angew. Chem. Int. Ed. 2012,
AUTHOR INFORMATION
51, 6762.
20) Fruit, C.; Müller, P. Tetrahedron: Asymmetry 2004, 15, 1019.
(
Corresponding Author
John F. Hartwig (jhartwig@berkeley.edu)
ACS Paragon Plus Environment