Organic Letters
Letter
contacting The Cambridge Crystallographic Data Centre, 12
Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.
Scheme 6. Proposed Mechanisms
AUTHOR INFORMATION
■
Corresponding Author
ORCID
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
This work was supported by a two-year research grant from
Pusan National University.
■
REFERENCES
(1) For general reviews, see: (a) Wessig, P.; Mu
2008, 108, 2051. (b) Saito, S.; Yamamoto, Y. Chem. Rev. 2000, 100,
■
̈
ller, G. Chem. Rev.
2901.
(2) For some selected examples: (a) Xiao, Y.; Lin, J.-B.; Zhao, Y.-N.;
Liu, J.-Y.; Xu, P.-F. Org. Lett. 2016, 18, 6276. (b) Yao, Q.; Liao, Y.; Lin,
L.; Lin, X.; Ji, J.; Liu, X.; Feng, X. Angew. Chem., Int. Ed. 2016, 55, 1859.
(c) Gurubrahamam, R.; Gao, B.-F.; Chen, Y. M.; Chan, Y. T.; Tsai, M.-
K.; Chen, K. Org. Lett. 2016, 18, 3098. (d) Li, W.; Yu, X.; Yue, Z.;
Zhang, J. Org. Lett. 2016, 18, 3972. (e) Li, W.; Yu, X.; Yue, Z.; Zhang, J.
Org. Lett. 2016, 18, 3972. (f) Verrier, C.; Melchiorre, P. Chem. Sci. 2015,
6, 4242. (g) Zhou, L.; Zhang, M.; Li, W.; Zhang, J. Angew. Chem., Int. Ed.
2014, 53, 6542. (h) Qian, H.; Yu, X.; Zhang, J.; Sun, J. J. Am. Chem. Soc.
2013, 135, 18020. (i) Rauniyar, V.; Wang, Z. J.; Burks, H. E.; Toste, F.
D. J. Am. Chem. Soc. 2011, 133, 8486. (j) Zhang, W.; Zheng, S. Q.; Liu,
N.; Werness, J. B.; Guzei, I. A.; Tang, W. P. J. Am. Chem. Soc. 2010, 132,
3664. (k) Nishimura, T.; Makino, H.; Nagaosa, M.; Hayashi, T. J. Am.
Chem. Soc. 2010, 132, 12865. (l) Belot, S.; Vogt, K. M.; Besnard, C.;
Krause, N.; Alexakis, A. Angew. Chem., Int. Ed. 2009, 48, 8923. (m) Xiao,
Y.; Zhang, J. Angew. Chem., Int. Ed. 2008, 47, 1903. (n) Hayashi, T.;
Tokunaga, N.; Inoue, K. Org. Lett. 2004, 6, 305. (o) Yao, T.; Zhang, X.;
Larock, R. C. J. Am. Chem. Soc. 2004, 126, 11164. (p) Han, J. W.;
Tokunaga, N.; Hayashi, T. J. Am. Chem. Soc. 2001, 123, 12915.
(3) (a) Fukui, K. In Molecular Orbitals in Chemistry, Physics, and
Biology; Lowdin, P.-O., Pullman, B., Ed.; Academic Press: New York,
1964; p 513. (b) Hoffmann, R.; Woodward, R. B. J. Am. Chem. Soc.
1965, 87, 4388. (c) Woodward, R. B.; Hoffmann, R. Angew. Chem., Int.
Ed. Engl. 1969, 8, 781. (d) Houk, K. N. Acc. Chem. Res. 1975, 8, 361.
(e) Fleming, I. Frontier Orbitals and Organic Chemical Reactions; Wiley:
London, 1976. (f) Geittner, J.; Huisgen, K. Tetrahedron Lett. 1977, 10,
881. (g) Padwa, A.; Carlsen, P. H. J. J. Org. Chem. 1978, 43, 3757.
(h) Sustmann, R. Pure Appl. Chem. 2009, 40, 569. (i) Chen, L.; Chen,
K.; Zhu, S. Chem. 2018, 4, 1208.
(4) (a) Gorman, C. B.; Marder, S. R. Proc. Natl. Acad. Sci. U. S. A.
1993, 90, 11297. (b) Ricks, A. B.; Solomon, G. C.; Colvin, M. T.; Scott,
A. M.; Chen, K.; Ratner, M. A.; Wasielewski, M. R. J. Am. Chem. Soc.
2010, 132, 15427.
(5) For selected precedents of alkene-alkyne [2 + 2] cycloaddition:
(a) Elena de Orbe, M.; Echavarren, A. M. Eur. J. Org. Chem. 2018, 2018,
2740. (b) Bai, Y.-B.; Luo, Z.; Wang, Y.; Gao, J.-M.; Zhang, L. J. Am.
Chem. Soc. 2018, 140, 5860. (c) Garcia-Morales, C. G.; Ranieri, B.;
Escofet, I.; Lopez-Suarez, L.; Obradors, C.; Konovalov, A. I.;
Echavarren, A. M. J. Am. Chem. Soc. 2017, 139, 13628. (d) Kossler,
D.; Perrin, F. G.; Sul-eymanov, A. A.; Kiefer, G.; Scopelliti, R.; Severin,
K.; Cramer, N. Angew. Chem., Int. Ed. 2017, 56, 11490. (e) Nishimura,
A.; Ohashi, M.; Ogoshi, S. J. Am. Chem. Soc. 2012, 134, 15692. (f) Li, Y.;
Liu, X.; Jiang, H.; Liu, B.; Chen, Z.; Zhou, P. Angew. Chem., Int. Ed.
a) over the enamide (path b) gives vinyl cation intermediate A.
Regioselective Friedel−Crafts alkenylation of an indole by A
produces B. Subsequent ring closure of the alkene at the indole
iminium ion gives 3 via addition−elimination (C). The
proposed mechanism for alkenylation (Scheme 6B) involves
the selective protonation of the -yne unit at the δ-position to
produce isomerized intermediate D, which is likely formed
through a continuous electron flow sequence. Nucleophilic
attack of the indole on the more electrophilic γ-carbon of D
affords cyclopropyl carbocation F via bond rearrangement of the
ipso-carbon as shown in E. Finally, rearomatization through
simultaneous loss of a proton and cyclopropane ring opening
affords alkenylation product 5 from F.
In conclusion, we have developed robust acid-mediated
protocols for the dearomative cycloaddition and alkenylation of
electron-rich indoles with electronically biased ynenamides for
the first time. An irreversible and chemoselective protonation of
the conjugated ynenamide allowed us to achieve divergent site-
selective functionalizations regio- and stereoselectively. More
importantly, the reagent-free ring expansion of the correspond-
ing isolable hydrolyzed cycloadducts extended our interests to
the investigation of the reactivity of conjugated ynones, enabling
expedient access to ubiquitous 1H-benzo[b]azepines. This work
also contributes new knowledge on the behavior of a new class of
alkynes tailored for indole chemistry.
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge on the
Screening of reaction conditions, experimental proce-
1
dures, X-ray diffraction data, and H and 13C NMR
spectra of all compounds (PDF)
Accession Codes
mentary crystallographic data for this paper. These data can be
́
2011, 50, 6341. (g) Lopez-Carrillo, V.; Echavarren, A. M. J. Am. Chem.
Soc. 2010, 132, 9292. (h) Hilt, G.; Paul, A.; Treutwein, J. Org. Lett.
2010, 12, 1536. (i) Takenaka, Y.; Ito, H.; Hasegawa, M.; Iguchi, K.
Tetrahedron 2006, 62, 3380. (j) Fu
̈
rstner, A.; Davies, P. W.; Gress, T. J.
D
Org. Lett. XXXX, XXX, XXX−XXX