Communication
ChemComm
Notes and references
1
Selected reviews: (a) D. A. Colby, R. G. Bergman and J. A. Ellman,
Chem. Rev., 2010, 110, 624; (b) L. Ackermann, Chem. Rev., 2011,
1
11, 1315; (c) H. M. L. Davies, J. Du Bois and J.-Q. Yu, Chem. Soc.
Rev., 2011, 40, 1855; (d) C.-L. Sun, B.-J. Li and Z.-J. Shi, Chem. Rev.,
011, 111, 1293; (e) A. V. Gulevich, A. S. Dudnik, N. Chernyak and
2
V. Gevorgyan, Chem. Rev., 2013, 113, 3084; ( f ) G. Song and X. Li, Acc.
Chem. Res., 2015, 48, 1007; (g) Y. Park, Y. Kim and S. Chang, Chem.
Rev., 2017, 117, 9247; (h) D.-S. Kim, W.-J. Park and C.-H. Jun, Chem.
Rev., 2017, 117, 8977; (i) Y. Yang, J. Lan and J. You, Chem. Rev., 2017,
1
17, 8787; ( j) T. Gensch, M. J. James, T. Dalton and F. Glorius,
Angew. Chem., Int. Ed., 2018, 57, 2296.
2
3
4
Selected reviews: (a) T. Satoh and M. Miura, Chem. – Eur. J., 2010,
16, 11212; (b) F. W. Patureau, J. Wencel-Delord and F. Glorius, Aldrichi-
mica Acta, 2012, 45, 31; (c) G. Song and X. Li, Acc. Chem. Res., 2015,
48, 1007; (d) S. V ´a squez-C ´e spedes, X. Wang and F. Glorius, ACS Catal.,
III
Fig. 6 Proposed catalytic cycle for the Rh -catalyzed C–H addition
cascade.
2
018, 8, 242; (e) T. Piou and T. Rovis, Acc. Chem. Res., 2018, 51, 170.
III
Recent reviews on Co -catalyzed CꢀH bond functionalization:
a) T. Yoshino and S. Matsunaga, Adv. Synth. Catal., 2017,
59, 1245; (b) M. Moselage, J. Li and L. Ackermann, ACS Catal.,
(
3
III
step in the presence of Rh catalyst, which is followed by
alkene coordination and insertion, thus affording the Z - or
Z -Rh -allyl species 11 (Fig. 6). The formation of resulting
Rh -allyl species 11 presumably involves protodemetalation
with the H-source (ROH) to form intermediate 12, which might
further undergo allylic C–H bond activation to afford Rh -allyl
species 13 with the assistance of the directing group. The
nucleophilic addition of an aldehyde 3 with the Rh -allyl
species 13 and subsequent protonolysis would provide the desired
homoallylic alcohols 4–6 and regenerate the Rh catalyst. For
nonconjugated dienes, the reaction would involve a sequential
elimination/reinsertion process of the double bond to access the
thermodynamically favored Rh -allyl species 11.
2016, 6, 498; (c) D. Wei, X. Zhu, J.-L. Niu and M.-P. Song, Chem-
CatChem, 2016, 8, 1242.
Some recent examples: (a) T. Yoshino, H. Ikemoto, S. Matsunaga
and M. Kanai, Angew. Chem., Int. Ed., 2013, 52, 2207; (b) B. Sun,
T. Yoshino, S. Matsunaga and M. Kanai, Adv. Synth. Catal., 2014,
1
3
III
III
3
56, 1491; (c) L. Grigorjeva and O. Daugulis, Angew. Chem., Int. Ed.,
2
014, 53, 10209; (d) D.-G. Yu, T. Gensch, F. de Azambuja, S. V ´a squez-
III
C ´e spedes and F. Glorius, J. Am. Chem. Soc., 2014, 136, 17722; (e) J. Li
and L. Ackermann, Angew. Chem., Int. Ed., 2015, 54, 3635; ( f ) J. R.
Hummel and J. A. Ellman, J. Am. Chem. Soc., 2015, 137, 490; (g) Y. Liang
and N. Jiao, Angew. Chem., Int. Ed., 2016, 55, 4035; (h) A. Lerchen,
S. Vasquez-Cespedes and F. Glorius, Angew. Chem., Int. Ed., 2016,
55, 3208; (i) M. Sen, B. Emayavaramban, N. Barsu, J. R. Premkumar
and B. Sundararaju, ACS Catal., 2016, 6, 2792; ( j) S. Prakash,
K. Muralirajan and C.-H. Cheng, Angew. Chem., Int. Ed., 2016, 55, 1844.
(a) H. Ikemoto, T. Yoshino, K. Sakata, S. Matsunaga and M. Kanai,
J. Am. Chem. Soc., 2014, 136, 5424; (b) D. Zhao, J. H. Kim, L. Stegemann,
C. A. Strassert and F. Glorius, Angew. Chem., Int. Ed., 2015, 54, 4508;
III
III
5
6
III
III
In conclusion, we have developed the first Rh -catalyzed
(c) Y. Suzuki, B. Sun, K. Sakata, T. Yoshino, S. Matsunaga and M. Kanai,
directing group-assisted three-component C–H addition cascade
across dienes and aldehydes. Our method is suitable for a wide
range of conjugated and nonconjugated dienes, and constitutes
a complementary access with Ellman’s Co(III) catalytic system.
Mechanistic experiments indicated a directed aryl C–H bond
activation/directed allylic C–H bond activation/addition cascade,
Angew. Chem., Int. Ed., 2015, 54, 9944; (d) J. A. Boerth and J. A. Ellman,
Angew. Chem., Int. Ed., 2017, 56, 9976.
(a) D. J. Ram ´o n and M. Yus, Angew. Chem., Int. Ed., 2005, 44, 1602;
(
(
b) D. M. D’Souza and T. J. J. M u¨ ller, Chem. Soc. Rev., 2007, 36, 1095;
c) J. Ye and M. Lautens, Nat. Chem., 2015, 7, 863.
III
7 Some latest examples of Rh -catalyzed two-component CꢀH bond
addition: (a) J. Yin, M. Tan, D. Wu, R. Jiang, C. Li and J. You, Angew.
Chem., Int. Ed., 2017, 56, 13094; (b) S.-S. Zhang, J. Xia, J.-Q. Wu, X.-G. Liu,
C.-J. Zhou, E. Lin, Q. Li, S.-L. Huang and H. Wang, Org. Lett., 2017,
19, 5868; (c) M. Callingham, B. M. Partridge, W. Lewis and H. W. Lam,
Angew. Chem., Int. Ed., 2017, 56, 16352; (d) M. Font, B. Cendln, A. Seoane,
J. L. MascareÇas and M. Gul ´ı as, Angew. Chem., Int. Ed., 2018, 57, 8255;
III
which is different from Ellman’s proposal in the Co catalytic
system.
We are grateful for the financial support from the National
Natural Science Foundation of China (21871146, 21602115), the
(e) T. Piou, F. Romanov-Michailidis, M. A. Ashley, M. Romanova-
1
000-Talent Youth Program, the Natural Science Foundation of
Michaelides and T. Rovis, J. Am. Chem. Soc., 2018, 140, 9587.
J. A. Boerth and J. A. Ellman, Chem. Sci., 2016, 7, 1474.
J. A. Boerth, J. R. Hummel and J. A. Ellman, Angew. Chem., Int. Ed.,
8
9
Tianjin (18JCYBJC20400), the Fundamental Research Funds for
the Central Universities and Nankai University.
2016, 55, 12650.
1
0 J. A. Boerth, S. Maity, S. K. Williams, B. Q. Mercado and J. A. Ellman,
Nat. Catal., 2018, 1, 673.
1
1
1 CCDC 1864795 (4s) and 1864796 (5d)†.
2 (a) E. M. Simmons and J. F. Hartwig, Angew. Chem., Int. Ed., 2012,
Conflicts of interest
51, 3066; (b) J. Atzrodt, V. Derdau, W. J. Kerr and M. Reid, Angew.
There are no conflicts to declare.
Chem., Int. Ed., 2018, 57, 3022.
698 | Chem. Commun., 2019, 55, 695--698
This journal is ©The Royal Society of Chemistry 2019